精英家教网 > 高中数学 > 题目详情

【题目】一饮料店制作了一款新饮料,为了进行合理定价先进行试销售,其单价(元)与销量(杯)的相关数据如下表:

单价(元)

8.5

9

9.5

10

10.5

销量(杯)

120

110

90

70

60

1)已知销量与单价具有线性相关关系,求关于的线性回归方程;

2)若该款新饮料每杯的成本为8元,试销售结束后,请利用(1)所求的线性回归方程确定单价定为多少元时,销售的利润最大?(结果四舍五入保留到整数)

附:线性回归方程中斜率和截距最小二乗法估计计算公式:.

【答案】12)单价应该定为10

【解析】

1)首先求出,然后再求出,即可求解.

2)设定价为元,利润函数为,利用二次函数的性质即可求解.

解:(1)由表中数据,

所以关于的线性相关方程为.

2)设定价为元,则利润函数为

其中,则

所以(元),

为使得销售的利润最大,确定单价应该定为10.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】原始的蚊香出现在宋代.根据宋代冒苏轼之名编写的《格物粗谈》记载:端午时,贮浮萍,阴干,加雄黄,作纸缠香,烧之,能祛蚊虫.”如图,为某校数学兴趣小组用数学软件制作的螺旋蚊香,画法如下:在水平直线上取长度为1的线段,做一个等边三角形,然后以点为圆心,为半径逆时针画圆弧,交线段的延长线于点,再以点为圆心,为半径逆时针画圆弧,交线段的延长线于点,以此类推,当得到的螺旋蚊香与直线恰有个交点时,螺旋蚊香的总长度的最小值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用数字01234组成没有重复数字且至少有两个数字是偶数的四位数,则这样的四位数的个数为( )

A.64B.72C.96D.144

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2xa|+|2x-1|(aR).

(1)a=-1时,求f(x)2的解集;

(2)f(x)|2x+1|的解集包含集合,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,半圆O的直径AB=2,点CAB的延长线上,BC=1,点P为半圆上异于AB两点的一个动点,以点P为直角顶点作等腰直角,且点D与圆心O分布在PC的两侧,设

1)把线段PC的长表示为的函数;

2)求四边形ACDP面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Snn2+pn,且a4a7a12成等比数列.

1)求数列{an}的通项公式;

2)若bn,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《高中数学课程标准》(2017版)规定了数学直观想象学科的六大核心素养,为了比较甲、乙两名高二学生的数学核心素养水平,现以六大素养为指标对二人进行了测验,根据测验结果绘制了雷达图(如图,每项指标值满分为5分,分值高者为优),则下面叙述正确的是(注:雷达图,又可称为戴布拉图、蜘蛛网图,可用于对研究对象的多维分析)(

A.甲的直观想象素养高于乙

B.甲的数学建模素养优于数据分析素养

C.乙的数学建模素养与数学运算素养一样

D.乙的六大素养整体水平低于甲

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是无穷数列,若存在正整数k,使得对任意,均有,则称是间隔递增数列,k的间隔数,下列说法正确的是(

A.公比大于1的等比数列一定是间隔递增数列

B.已知,则是间隔递增数列

C.已知,则是间隔递增数列且最小间隔数是2

D.已知,若是间隔递增数列且最小间隔数是3,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)=|xa|+|x+b|ab0.

1)当a1b1时,求不等式fx)<3的解集;

2)若fx)的最小值为2,求的最小值.

查看答案和解析>>

同步练习册答案