【题目】设函数.
(1)若是的极大值点,求的取值范围;
(2)当,时,方程(其中)有唯一实数解,求的值.
【答案】(1)(2)
【解析】
(1)由题意,求得函数的导数得到,分类讨论得到函数的单调性和极值,即可求解实数的取值范围;
(2)因为方程有唯一实数解,即有唯一实数解,设,利用导数,令,得,由此入手即可求解实数m的值.
(1)由题意,函数的定义域为,则导数为
由,得,∴
①若,由,得.
当时,,此时单调递增;
当时,,此时单调递减.
所以是的极大值点
②若,由,得,或.
因为是的极大值点,所以,解得
综合①②:的取值范围是
(2)因为方程有唯一实数解,所以有唯一实数解
设,则,
令,即.
因为,,所以(舍去),
当时,,在上单调递减,
当时,,在单调递增
当时,,取最小值
则,即,
所以,因为,所以(*)
设函数,
因为当时,是增函数,所以至多有一解
因为,所以方程(*)的解为,即,解得
科目:高中数学 来源: 题型:
【题目】设常数,函数
(1)当时,判断在上单调性,并加以证明;
(2)当时,研究的奇偶性,并说明理由;
(3)当时,若存在区间使得在上的值域为,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,分别为双曲线的左、右焦点,以为直径的圆与双曲线在第一象限和第三象限的交点分别为,,设四边形的周长为,面积为,且满足,则该双曲线的离心率为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列、、,对于给定的正整数,记,.若对任意的正整数满足:,且是等差数列,则称数列为“”数列.
(1)若数列的前项和为,证明:为数列;
(2)若数列为数列,且,求数列的通项公式;
(3)若数列为数列,证明:是等差数列 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某书店为了了解销售单价(单位:元)在]内的图书销售情况,从2018年上半年已经销售的图书中随机抽取100本,获得的所有样本数据按照,,,,,分成6组,制成如图所示的频率分布直方图,已知样本中销售单价在内的图书数是销售单价在内的图书数的2倍.
(1)求出与,再根据频率分布直方图估计这100本图书销售单价的平均数(同一组中的数据用该组区间的中点值作代表);
(2)用分层抽样的方法从销售单价在[8,20]内的图书中共抽取40本,求单价在6组样本数据中的图书销售的数量;
(3)从(2)中抽取且价格低于12元的书中任取2本,求这2本书价格都不低于10元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】自由购是通过自助结算方式购物的一种形式.某大型超市为调查顾客使用自由购的情况,随机抽取了100人,统计结果整理如下:
20以下 | [20,30) | [30,40) | [40,50) | [50,60) | [60,70] | 70以上 | |
使用人数 | 3 | 12 | 17 | 6 | 4 | 2 | 0 |
未使用人数 | 0 | 0 | 3 | 14 | 36 | 3 | 0 |
(Ⅰ)现随机抽取1名顾客,试估计该顾客年龄在且未使用自由购的概率;
(Ⅱ)从被抽取的年龄在使用自由购的顾客中,随机抽取3人进一步了解情况,用表示这3人中年龄在的人数,求随机变量的分布列及数学期望;
(Ⅲ)为鼓励顾客使用自由购,该超市拟对使用自由购的顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三人参加微信群抢红包游戏,规则如下:每轮游戏发个红包,每个红包金额为元,.已知在每轮游戏中所产生的个红包金额的频率分布直方图如图所示.
(1)求的值,并根据频率分布直方图,估计红包金额的众数;
(2)以频率分布直方图中的频率作为概率,若甲、乙、丙三人从中各抢到一个红包,其中金额在的红包个数为,求的分布列和期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com