精英家教网 > 高中数学 > 题目详情

【题目】设函数.

(1)若的极大值点,求的取值范围;

(2)当时,方程(其中)有唯一实数解,求的值.

【答案】(1)(2)

【解析】

(1)由题意,求得函数的导数得到,分类讨论得到函数的单调性和极值,即可求解实数的取值范围;

(2)因为方程有唯一实数解,即有唯一实数解,设,利用导数,令,得,由此入手即可求解实数m的值.

(1)由题意,函数的定义域为,则导数为

,得,∴

①若,由,得.

时,,此时单调递增;

时,,此时单调递减.

所以的极大值点

②若,由,得,或.

因为的极大值点,所以,解得

综合①②:的取值范围是

(2)因为方程有唯一实数解,所以有唯一实数解

,则

,即.

因为,所以(舍去),

时,上单调递减,

时,单调递增

时,取最小值

,即

所以,因为,所以(*)

设函数

因为当时,是增函数,所以至多有一解

因为,所以方程(*)的解为,即,解得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设常数,函数

(1)当时,判断上单调性,并加以证明;

(2)当时,研究的奇偶性,并说明理由;

(3)当时,若存在区间使得上的值域为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别为双曲线的左、右焦点,以为直径的圆与双曲线在第一象限和第三象限的交点分别为,设四边形的周长为,面积为,且满足,则该双曲线的离心率为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列,对于给定的正整数,记.若对任意的正整数满足:,且是等差数列,则称数列为“”数列.

(1)若数列的前项和为,证明:数列;

(2)若数列数列,且,求数列的通项公式;

(3)若数列数列,证明:是等差数列 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某书店为了了解销售单价(单位:元)在]内的图书销售情况,从2018年上半年已经销售的图书中随机抽取100本,获得的所有样本数据按照,,分成6组,制成如图所示的频率分布直方图,已知样本中销售单价在内的图书数是销售单价在内的图书数的2倍.

(1)求出,再根据频率分布直方图估计这100本图书销售单价的平均数(同一组中的数据用该组区间的中点值作代表);

(2)用分层抽样的方法从销售单价在[8,20]内的图书中共抽取40本,求单价在6组样本数据中的图书销售的数量;

(3)从(2)中抽取且价格低于12元的书中任取2本,求这2本书价格都不低于10元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的离心率,椭圆上的点到左焦点的距离的最大值为3.

(1)求椭圆的方程;

(2)求椭圆的外切矩形的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自由购是通过自助结算方式购物的一种形式.某大型超市为调查顾客使用自由购的情况随机抽取了100人,统计结果整理如下

20以下

[20,30)

[30,40)

[40,50)

[50,60)

[60,70]

70以上

使用人数

3

12

17

6

4

2

0

未使用人数

0

0

3

14

36

3

0

(Ⅰ)现随机抽取1名顾客试估计该顾客年龄在且未使用自由购的概率;

(Ⅱ)从被抽取的年龄在使用自由购的顾客中随机抽取3人进一步了解情况表示这3人中年龄在的人数,求随机变量的分布列及数学期望

(Ⅲ)为鼓励顾客使用自由购,该超市拟对使用自由购的顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是矩形,的中点,交于点平面

(1)求证;平面平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人参加微信群抢红包游戏,规则如下:每轮游戏发个红包,每个红包金额为元,已知在每轮游戏中所产生的个红包金额的频率分布直方图如图所示

1的值,并根据频率分布直方图,估计红包金额的众数;

2以频率分布直方图中的频率作为概率,若甲、乙、丙三人从中各抢到一个红包,其中金额在的红包个数为,求的分布列和期望

查看答案和解析>>

同步练习册答案