精英家教网 > 高中数学 > 题目详情

【题目】在极坐标系中,曲线的极坐标方程为,曲线的极坐标方程为,以极点为坐标原点,极轴为的正半轴建立平面直角坐标系.

(1)求的参数方程;

(2)已知射线,将逆时针旋转得到,且交于两点, 交于两点,求取得最大值时点的极坐标.

【答案】(Ⅰ)为参数); (Ⅱ)

【解析】试题分析:(Ⅰ)根据坐标方程之间的转化,分别求出C1和C2的参数方程即可;(Ⅱ)设出P,Q的极坐标,表示出|OP||OQ|的表达式,结合三角函数的性质求出P的极坐标即可.

试题解析:(Ⅰ)在直角坐标系中,曲线的直角坐标方程为

所以参数方程为为参数).

曲线的直角坐标方程为.

所以参数方程为为参数)

(Ⅱ)设点极坐标为, 即,

极坐标为, 即.

取最大值,此时点的极坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】4个男生,3个女生站成一排.(必须写出算式再算出结果才得分)

(Ⅰ)3个女生必须排在一起,有多少种不同的排法?

(Ⅱ)任何两个女生彼此不相邻,有多少种不同的排法?

(Ⅲ)甲乙二人之间恰好有三个人,有多少种不同的排法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知如图,圆、椭圆均经过点M,圆的圆心为,椭圆的两焦点分别为.

(Ⅰ)分别求圆和椭圆的标准方程;

(Ⅱ)过作直线与圆交于两点,试探究是否为定值?若是定值,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线 ,直线与抛物线相交于两点,且当倾斜角为的直线经过抛物线的焦点时,有.

(1)求抛物线的方程;

(2)已知圆,是否存在倾斜角不为的直线,使得线段被圆截成三等分?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数f(x)中,满足“任意x1 , x2∈(0,+∞),且x1≠x2 , 都有(x1﹣x2)[f(x1)﹣f(x2)]<0”的是(
A.f(x)= ﹣x
B.f(x)=x3
C.f(x)=ln x
D.f(x)=2x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的焦点在轴上,离心率为,抛物线的焦点在轴上, 的中心和的顶点均为原点,点上,点上,

(1)求曲线 的标准方程;

(2)请问是否存在过抛物线的焦点的直线与椭圆交于不同两点,使得以线段为直径的圆过原点?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级随机抽取了名学生第一学期的数学学期综合成绩和物理学期综合成绩.

列表如下:

学生序号

数学学期综合成绩

物理学期综合成绩

学生序号

数学学期综合成绩

物理学期综合成绩

规定:综合成绩不低于分者为优秀,低于分为不优秀.

对优秀赋分,对不优秀赋分,从名学生中随机抽取名学生,若用表示这名学生两科赋分的和,求的分布列和数学期望;

根据这次抽查数据,列出列联表,能否在犯错误的概率不超过的前提下认为物理成绩与数学成绩有关?

附: ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修:坐标系与参数方程选讲.

在平面直角坐标系中,曲线为参数,实数),曲线

为参数,实数). 在以为极点, 轴的正半轴为极轴的极坐标系中,射线交于两点,与交于两点. 当时, ;当时, .

(1)求的值; (2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),直线的参数方程为为参数).以原点为极点, 轴的正半轴为极轴建立极坐标系,点的极坐标方程为.

(1)求点的直角坐标,并求曲线的普通方程;

(2)设直线与曲线的两个交点为,求的值.

查看答案和解析>>

同步练习册答案