精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)求函数的单调区间和极值;

(2)若有两个零点,求实数的范围.

【答案】(1)增区间为,减区间为;极小值,无极大值.(2)

【解析】试题分析:(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,进而求得函数的极值
(2)求出函数的导数,通过讨论的范围,确定函数的单调性,求出实数的范围.

试题解析:(1)根据

,解得,当变化时, 的变化情况如下表:

递减

递增

∴函数的增区间为,减区间为

函数处取的极小值,无极大值.

(2)由,则

时, ,易知函数只有一个零点,不符合题意,

时,在 单调递减;在 单调递增,又 ,当时, ,所以函数有两个零点,

时,在 单调递增,在 单调递减.又 ,所以函数至多一个零点,不符合题意,

时,在 单调递增,在 单调递减.

,所以函数至多一个零点,不符合题意,

时, ,函数在上单调递增,所以函数至多一个零点,不符合题意,

综上,实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】北京时间3月15日下午,谷歌围棋人工智能与韩国棋手李世石进行最后一轮较量, 获得本场比赛胜利,最终人机大战总比分定格.人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.

(Ⅰ)根据已知条件完成下面的列联表,并据此资料你是否有的把握认为“围棋迷”与性别有关?

非围棋迷

围棋迷

合计

10

55

合计

(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名淡定生中的“围棋迷”人数为。若每次抽取的结果是相互独立的,求的平均值和方差.

附: ,其中.

td style="width:124.95pt; border-top-style:solid; border-top-width:0.75pt; border-right-style:solid; border-right-width:0.75pt; border-left-style:solid; border-left-width:0.75pt; padding:3.38pt 5.03pt; vertical-align:middle">

3.841

0.05

0.01

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据某水文观测点的历史统计数据,得到某河流水位(单位:米)的频率分布直方图如下:将河流水位在以上6段的频率作为相应段的概率,并假设每年河流水位互不影响.

)求未来三年,至多有1年河流水位的概率(结果用分数表示);

)该河流对沿河企业影响如下:当时,不会造成影响;当时,损失10000元;当时,损失60000元,为减少损失,现有三种应对方案:

方案一:防御35的最高水位,需要工程费用3800元;

方案二:防御不超过31的水位,需要工程费用2000元;

方案三:不采用措施:试比较哪种方案较好,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体中,,点分别为的中点.

(1)证明:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,已知圆的圆心坐标为,半径为,以坐标原点为极点, 轴正半轴为极轴,建立极坐标系,直线的参数方程为: 为参数)

(1)求圆和直线的极坐标方程;

(2)点 的极坐标为,直线与圆相较于,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,且两焦点与短轴的一个端点构成等腰直角三角形.

(Ⅰ)求椭圆的方程;

(Ⅱ)若圆的任意一条切线与椭圆E相交于P,Q两点,试问: 是否为定值? 若是,求这个定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知射手甲射击一次,命中9环(含9环)以上的概率为0.56,命中8环的概率为0.22,命中7环的概率为0.12.

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(1)求甲射击一次,命中不足8环的概率;

(2)求甲射击一次,至少命中7环的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

1)若的充分不必要条件,求实数的取值范围;

(2)若为真命题,“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数.

)求的单调区间和极值;

)证明:若存在零点,则在区间上仅有一个零点.

查看答案和解析>>

同步练习册答案