精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知圆心在直线上的圆经过点,但不经过坐标原点,并且直线与圆相交所得的弦长为4.

(1)求圆的一般方程;

(2)若从点发出的光线经过轴反射,反射光线刚好通过圆的圆心,求反射光线所在的直线方程(用一般式表达).

【答案】(1);(2)反射光线所在的直线方程的一般式为: .

【解析】试题分析:(1)设圆,根据圆心在直线上,圆经过点,并且直线与圆相交所得的弦长为,列出关于的方程组,解出的值,可得圆的标准方程,再化为一般方程即可;(2)点关于轴的对称点,反射光线所在的直线即为,又因为

利用两点式可得反射光线所在的直线方程,再化为一般式即可.

试题解析:(1)设圆

因为圆心在直线上,所以有:

又因为圆经过点,所以有:

而圆心到直线的距离为

由弦长为4,我们有弦心距.

所以有

联立成方程组解得:

又因为通过了坐标原点,所以舍去.

所以所求圆的方程为:

化为一般方程为: .

(2)点关于轴的对称点

反射光线所在的直线即为,又因为

所以反射光线所在的直线方程为:

所以反射光线所在的直线方程的一般式为: .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设圆x2+y2=2的切线l与轴的正半轴、轴的正半轴分别交于点A、B,当|AB|取最小值时,切线l的方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,一个焦点F(﹣2,0),且长轴长与短轴长的比是
(1)求椭圆C的方程;
(2)设点M(m,0)在椭圆C的长轴上,点P是椭圆上任意一点.当 最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数是定义在(﹣∞,+∞)上的奇函数.

(1)求a的值;

(2)当x∈(0,1]时,tf(x)≥2x﹣2恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对正整数n,记In={1,2,3,...,n},Pn={|m∈In,k∈In}.

(1)求集合P7中元素的个数;

(2)若Pn的子集A中任意两个元素之和不是整数的平方,则称A为“稀疏集”.求n的最大值,使Pn能分成两个不相交的稀疏集的并集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,随着我市经济的快速发展,政府对民生也越来越关注. 市区现有一块近似正三角形土地ABC(如图所示),其边长为2百米,为了满足市民的休闲需求,市政府拟在三个顶点处分别修建扇形广场,即扇形DBEDAGECF其中分别相切于点DE,且无重叠,剩余部分(阴影部分)种植草坪. 设BD长为x(单位:百米,草坪面积为S(单位:百米2).

(1)试用x分别表示扇形DAGDBE的面积,并写出x的取值范围;

(2)当x为何值时草坪面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为

(1)求频率分布图中的值,并估计该企业的职工对该部门评分不低于80的概率;

(2)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD﹣A1B1C1D1中,E是A1B1上一点,若平面EBD与平面ABCD所成锐二面角的正切值为 ,设三棱锥A﹣A1D1E外接球的直径为a,则 =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的程序框图中,若输出i的值是3,则输入x的取值范围是

查看答案和解析>>

同步练习册答案