精英家教网 > 高中数学 > 题目详情
4.直线y=3x+1是曲线y=x3-a的一条切线,则实数a的值为-3或1.

分析 先对y=x3-a进行求导,设出切点,然后令导函数等于3求出切点坐标,代入到曲线方程可得答案.

解答 解:设切点为P(x0,y0),
对y=x3-a求导数是y'=3x2
由题意可得3x02=3.∴x0=±1.
(1)当x=1时,
∵P(x0,y0)在y=3x+1上,
∴y=3×1+1=4,即P(1,4).
又P(1,4)也在y=x3-a上,
∴4=13-a.∴a=-3.
(2)当x=-1时,
∵P(x0,y0)在y=3x+1上,
∴y=3×(-1)+1=-2,即P(-1,-2).
又P(-1,-2)也在y=x3-a上,
∴-2=(-1)3-a.∴a=1.
综上可知,实数a的值为-3或1.
故答案为:-3或1.

点评 本题考查导数的运用,主要考查导数的几何意义,即函数在某点的导数值等于以该点为切点的切线的斜率,注意设出切点,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若x1满足2010x+2010x=2,x2满足2010x+2010log2010(x-1)=2,则x1+x2=(  )
A.1B.$\frac{2011}{2010}$C.$\frac{1006}{1005}$D.$\frac{2013}{2010}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=acosx+xsinx,x∈[-$\frac{π}{2}$,$\frac{π}{2}$].当1<a<2时,则函数f(x)极值点个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某学校安排3位老师与5名学生去3地参观学习,每地至少去1名老师和1名学生,则不同的安排方法总数为(  )
A.1800B.900C.300D.1440

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某校在一次对是否喜欢英语学科的学生的抽样调查中,随机抽取了100名同学,相关的数据如表所示:
不喜欢英语喜欢英语总计
男生401858
女生152742
总计5545100
(Ⅰ)试运用独立性检验的思想方法分析:是否有99%的把握认为“学生是否喜欢英语与性别有关?”说明理由.
(Ⅱ)用分层抽样方法在喜欢英语学科的学生中随机抽取5名,女学生应该抽取几名?
(Ⅲ)在上述抽取的5名学生中任取2名,求恰有1名学生为男性的概率.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,
p(K2≥k)0.1000.0500.0250.010.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列四个说法:其中正确说法的个数是(  )个
①方程x2+2x-7=0的两根之和为-2,两根之积为-7;
②方程x2-2x+7=0的两根之和为-2,两根之积为7;
③方程3x2-7=0的两根之和为0,两根之积为$-\frac{7}{3}$;
④方程3x2+2x=0的两根之和为-2,两根之积为0.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知a-b=1(0<b<1),则$\frac{{a}^{2}+2}{a}$+$\frac{{b}^{2}}{1-b}$的最小值为$\frac{3}{2}+\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.(理)在三棱锥S-ABC中,SB⊥BC,SA⊥AC,SB=BC,SA=AC,平面SBC与平面SAC所成的角为60°,且三棱锥S-ABC的体积为$\frac{{9\sqrt{3}}}{2}$,则三棱锥的外接球的半径为(  )
A.3B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若一元二次方程ax2+bx+c=0(a>0)无实数解,则ax2+bx+c<0的解集为∅.

查看答案和解析>>

同步练习册答案