精英家教网 > 高中数学 > 题目详情
随机变量ξ的分布列如下:
ξ -1 0 1
P a b c
其中a,b,c成等差数列,若Eξ=
1
3
.则Dξ的值是
 
分析:要求这组数据的方差,需要先求出分布列中变量的概率,这里有三个条件,一个是三个数成等差数列,一个是概率之和是1,一个是这组数据的期望,联立方程解出结果.
解答:解:∵a,b,c成等差数列,
∴2b=a+c,
∵a+b+c=1,
Eξ=-1×a+1×c=c-a=
1
3

联立三式得a=
1
6
,b=
1
3
,c=
1
2

Dξ=(-1-
1
3
)2×
1
6
+(
1
3
)2×
1
3
+(
2
3
)2×
1
2
=
5
9

故答案为:
5
9
点评:这是一个综合题目,包括等差数列,离散型随机变量的期望和方差,主要考查分布列和期望的简单应用,通过解方程组得到要求的变量,这与求变量的期望是一个相反的过程,但是两者都要用到期望的公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知离散型随机变量X的分布列如表.若EX=0,DX=1,则a=
 
,b=
 
X -1 0 1 2
P a b c
1
12

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网若离散型随机变量X的分布列如图,则常数c的值为(  )
A、
2
3
1
3
B、
2
3
C、
1
3
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知随机变量X的分布列如图:其中m,n∈[0,1),且E(X)=
1
6
,则m,n的值分别为(  )
A、
1
12
1
2
B、
1
6
1
6
C、
1
4
1
3
D、
1
3
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知离散型随机变量X 的分布列如右图.若E(X)=0,D(X)=1,则a、b、c的值依次为
5
12
1
4
1
4
5
12
1
4
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知离散型随机变量x的分布列如右表.若Eξ=0,Dξ=1,则符合条件的一组数(a,b,c)=
 

查看答案和解析>>

同步练习册答案