精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD的底面是边长为1的正方形,侧棱PA⊥底面ABCD,且PA=2,E是侧棱PA上的动点.
(I)求四棱锥P-ABCD的体积;
(Ⅱ)如果E是PA的中点,求证:PC平面BDE;
(Ⅲ)探究:不论点E在侧棱PA的任何位置,BD⊥CE是否都成立?若成立,证明你的结论;若不成立,请说明理由.
(1)∵PA⊥平面ABCD,
∴VP-ABCD=
1
3
SABCD•PA
=
1
3
×12×2
=
2
3
…3分
即四棱锥P-ABCD的体积为
2
3
.…4分
(2)证明:连接AC交BD于O,连接OE.
∵四边形ABCD是正方形,∴O是AC的中点.
又∵E是PA的中点,∴PCOE.…6分
∵PC?平面BDE,OE?平面BDE
∴PC平面BDE.…8分
(3)不论点E在何位置,BD⊥CE成立.…9分
证明如下:∵四边形ABCD是正方形,∴BD⊥AC.
∵PA⊥平面ABCD,且BD?平面ABCD,∴BD⊥PA.
又∵AC∩PA=A,∴BD⊥平面PAC.…10分
∵不论点E在何位置,都有CE?平面PAC.
∴不论点点E在何位置,BD⊥CE成立.…12分.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知四棱锥S-ABCD,底面为正方形,SA⊥底面ABCD,AB=AS=a,M、N分别为AB、SC中点.
(Ⅰ)求四棱锥S-ABCD的表面积;
(Ⅱ)求证:MN平面SAD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图为一组合体,其底面ABCD为正方形,PD⊥平面ABCD,ECPD,且PD=AD=2EC=2
(Ⅰ)求证:BE平面PDA;
(Ⅱ)求四棱锥B-CEPD的体积;
(Ⅲ)求该组合体的表面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥E-ABCD中,底面ABCD是矩形,AB=2BC,P、Q分别为线段AB、CD的中点,EP⊥底面ABCD.
(1)求证:AQ平面CEP;
(2)求证:平面AEQ⊥平面DEP;
(3)若EP=AP=1,求三棱锥E-AQC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6.D、E分别是AC、AB上的点,且DEBC,将△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如图2.
(1)求证:BC平面A1DE;
(2)求证:BC⊥平面A1DC;
(3)当D点在何处时,A1B的长度最小,并求出最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC=3,AB=5,cos∠BAC=
3
5

(1)求证:BC⊥AC1
(2)若D是AB的中点,求证:AC1平面CDB1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱柱ABCD-A1B1C1D1中,D1D⊥底面ABCD,底面ABCD是正方形,且AB=1,D1D=
2
,E、F、G分别A1B1、B1C1、BB1的中点.
(1)求直线D1B与平面ABCD所成角的大小.
(2)求证:AC平面EGF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正三棱柱ABC-A1B1C1中,M、N分别为A1B1、AB的中点.
①求证:平面A1NC平面BMC1
②若AB=AA1,求BM与AC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,垂足为点A,PA=AB=2,点M,N分别是PD,PB的中点.
(I)求证:PB平面ACM;
(II)求证:MN⊥平面PAC;
(III)求四面体A-MBC的体积.

查看答案和解析>>

同步练习册答案