精英家教网 > 高中数学 > 题目详情

【题目】已知E、F分别在正方体ABCD﹣A1B1C1D1的棱BB1、CC1上,且B1E=2EB,CF=2FC1 , 则面AEF与面ABC所成的二面角的正切值等于

【答案】
【解析】解:由题意画出图形如图:
因为E、F分别在正方体ABCD﹣A1B1C1D1的棱BB1、CC1上,且B1E=2EB,CF=2FC1
延长CB、FE交点为S连接AS,过B作BP⊥AS连接PE,所以面AEF与面ABC所成的二面角就是∠BPE,因为B1E=2EB,CF=2FC1
所以BE:CF=1:2
所以SB:SC=1:2,
设正方体的棱长为:a,所以AS= a,BP= a,BE= ,在RT△PBE中,tan∠EPB= = =
所以答案是:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,点是椭圆上的点,离心率.

(1)求椭圆的方程;

(2)点在椭圆上,若点与点关于原点对称,连接并延长与椭圆的另一个交点为,连接,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【浙江省名校协作体2017届高三上学期联考】已知椭圆,经过椭圆上一点的直线与椭圆有且只有一个公共点,且横坐标为.

(1)求椭圆的标准方程

2)若椭圆的一条动弦为坐标原点面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高一年级期中考试的学生中抽出60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60)…,[80,90),[90,100],然后画出如图所示部分频率分布直方图.观察图形的信息,回答下列问题:

(1)求第四小组的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分及60分以上为及格)和平均分;
(3)把从[80,90)分数段选取的最高分的两人组成B组,[90,100]分数段的学生组成C组,现从B,C两组中选两人参加科普知识竞赛,求这两个学生都来自C组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)求的轨迹

(2)过轨迹上任意一点作圆的切线,设直线的斜率分别是,试问在三个斜率都存在且不为0的条件下, 是否是定值,请说明理由,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】余江人热情好客,凡逢喜事,一定要摆上酒宴,请亲朋好友、同事高邻来助兴庆贺.欢度佳节,迎亲嫁女,乔迁新居,学业有成,仕途风顺,添丁加口,朋友相聚,都要以酒示意,借酒表达内心的欢喜.而凡有酒宴,一定要划拳,划拳是余江酒文化的特色.余江人划拳注重礼节,形式多样;讲究规矩,蕴含着浓厚的传统文化和淳朴的民俗特色.在礼节上,讲究“尊老尚贤敬远客”一般是东道主自己或委托桌上一位酒量好的划拳高手来“做关”,——就是依次陪桌上会划拳的划一年数十二拳(也有半年数六拳).十二拳之后晚辈还要敬长辈一杯酒.

再一次家族宴上,小明先陪他的叔叔猜拳12下,最后他还要敬他叔叔一杯,规则如下:前两拳只有小明猜叔赢叔叔,叔叔才会喝下这杯敬酒,且小明也要陪喝,如果第一拳小明没猜到,则小明喝下第一杯酒,继续猜第二拳,没猜到继续喝第二杯,但第三拳不管谁赢双方同饮自己杯中酒,假设小明每拳赢叔叔的概率为,问在敬酒这环节小明喝酒三杯的概率是多少( )

(猜拳只是一种娱乐,喝酒千万不要过量!)

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知空间四边形 分别在上,

(1),异面直线所成的角的大小为,求所成的角的大小;

(2)当四边形是平面四边形时,试判断三条直线的位置关系,并选择其中一种位置关系说明理由;

(3)已知当,异面直线所成角为,当四边形是平行四边形时,试判断点在什么位置时,四边形的面积最大,试求出最大面积并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,以原点为极点, 轴的正半轴为极轴,建立极坐标系.已知点的极坐标为,曲线的参数方程为 (为参数)

(1)求点的直角坐标;化曲线的参数方程为普通方程;

(2)设为曲线上一动点,以为对角线的矩形的一边垂直于极轴,求矩形周长的最小值,及此时点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A. 有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥

B. 有两个面平行且相似,其余各面都是梯形的多面体是棱台

C. 如果一个棱锥的各个侧面都是等边三角形,那么这个棱锥可能为六棱锥

D. 有两个相邻侧面是矩形的棱柱是直棱柱

查看答案和解析>>

同步练习册答案