精英家教网 > 高中数学 > 题目详情

已知,点在函数的图象上,其中
(1)求
(2)证明数列是等比数列;
(3)设,求及数列的通项

(1);(2)由已知,两边取对数得,即
;(3)=

解析试题分析:(1)
(2)由已知,    
       ,两边取对数得
,即
是公比为2的等比数列.
(3)由(2)知
(*)
=
由(*)式得
考点:本题考查了数列通项公式的求法及其前n项问题
点评:解决数列的前n项和的方法一般有:公式法、倒序相加法、错位相减法、分组求和法、裂项法等,要求学生掌握几种常见的裂项比如

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列的前项和,数列满足
(1)求数列的通项公式;(2)求数列的前项和;
(3)求证:不论取何正整数,不等式恒成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)已知数列是各项均不为的等差数列,公差为为其前项和,且满足.数列满足为数列的前n项和.
(Ⅰ)求数列的通项公式和数列的前n项和
(Ⅱ)若对任意的,不等式恒成立,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)设数列为单调递增的等差数列依次成等比数列.
(Ⅰ)求数列的通项公式
(Ⅱ)若求数列的前项和
(Ⅲ)若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知数列是递增数列,且满足
(1)若是等差数列,求数列的通项公式;
(2)对于(1)中,令,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 已知曲线,从上的点轴的垂线,交于点,再从点轴的垂线,交于点
.。
求数列的通项公式;
,数列的前项和为,试比较的大小
,数列的前项和为,试证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)设数列的前项和为,且;数列为等差数列,且.
(Ⅰ)求数列的通项公式;
(Ⅱ)若为数列的前项和. 求:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足,试证明:
(1)当时,有
(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数定义在区间上,,且当时,
恒有.又数列满足.
(1)证明:上是奇函数;
(2)求的表达式;
(3)设为数列的前项和,若恒成立,求的最小值.

查看答案和解析>>

同步练习册答案