精英家教网 > 高中数学 > 题目详情

【题目】如图,在直三棱柱中,底面是等腰直角三角形, ,侧棱DE分别是的中点,点E在平面ABD上的射影是的重心

(Ⅰ)求与平面ABD所成角的余弦值

(Ⅱ)求点到平面的距离

【答案】(Ⅰ).

【解析】试题分析:(Ⅰ先利用线面角的定义找出线面角,再利用解直角三角形进行求解;(先利用面面垂直的判定定理证明面面垂直,再利用利用面面垂直的性质作出线面垂直,得到点到平面的距离.

试题解析:(Ⅰ)连结,则的射影,即与平面所成的角.设中点,连结,∵分别是的中点,又平面,则为正方形,连接 的重心,且,在直角三角形中,

(Ⅱ) ,又

即平面平面,作,垂足为,所以平面,即到平面的距离,在三角形中, ,则

到平面的距离为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(  )
A.命题“若x2>1,则x>1”的否命题为“若x2>1,则
B.命题“?x>1”的否定是“,x2>1”
C.命题“若x=y,则cosx=cosy"的逆否命题为假命题
D.命题“若x=y,则cosx=cosy"的逆命题为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)2x.

(Ⅰ)若f(x)=,求x的值;

(Ⅱ)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂用鲜牛奶在某台设备上生产AB两种奶制品.生产1A产品需鲜牛奶2吨,使用设备1小时,获利1 000元;生产1B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1 200.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产AB两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为

W

12

15

18

P

0.3

0.5

0.2

该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.

(I)Z的分布列和均值;

(II)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10 000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆O1和圆O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ
(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;
(2)求经过圆O1、圆O2交点的直线的直角坐标方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥,底面为菱形,, 平面 分别是的中点。

1证明:

2的中点时与平面所成的角最大,且所成角的正切值为,求点A到平面的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知曲线 ,求:
(1)两曲线(含直线)的公共点 P 的极坐标
(2)过点 P ,被曲线 截得的弦长为 的直线的极坐标方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的外接圆半径,角ABC的对边分别是abc,且.

I)求角B和边长b

II)求面积的最大值及取得最大值时的ac的值,并判断此时三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,直线l的参数方程为 (t为参数).在以原点O为极点,x轴正半轴为极轴的极坐标系中,圆C的方程为ρ=4cosθ.

(1)写出直线l的普通方程和圆C的直角坐标方程.

(2)若点P坐标为(1,1),圆C与直线l交于A,B两点,求|PA|+|PB|的值.

查看答案和解析>>

同步练习册答案