精英家教网 > 高中数学 > 题目详情

【题目】已知直线 .

(1)当时,直线的交点,且它在两坐标轴上的截距相反,求直线的方程;

(2)若坐标原点到直线的距离为,判断的位置关系.

【答案】(1);(2)

【解析】试题分析:(1)联立解得的交点为(-21,-9),当直线过原点时,直线的方程为;当直线不过原点时,设的方程为,将(-21,-9)代入得,解得所求直线方程(2)设原点到直线的距离为,则,解得: ,分情况根据斜率关系判断两直线的位置关系;

试题解析:

解:(1)联立解得的交点为(021,-9).

当直线过原点时,直线的方程为

当直线不过原点时,设的方程为,将(-21,-9)代入得

所以直线的方程为,故满足条件的直线方程为.

(2)设原点到直线的距离为

,解得:

时,直线的方程为,此时

时,直线的方程为,此时.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系.若直线的极坐标方程为,曲线的极坐标方程为,将曲线上所有点的横坐标缩短为原来的一半,纵坐标不变,然后再向右平移一个单位得到曲线

(Ⅰ)求曲线的直角坐标方程;

(Ⅱ)已知直线与曲线交于两点,点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和是等差数列,且.

)求数列的通项公式;

)令.求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与圆

(1)若直线与圆相交于两个不同点,求的最小值;

(2)直线上是否存在点,满足经过点有无数对互相垂直的直线,它们分别与圆和圆相交,并且直线被圆所截得的弦长等于直线被圆所截得的弦长?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由长方形的休闲区A1B1C1D1(阴影部分)和环公园人行道组成.已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米.
(1)若设休闲区的长A1B1=x米,求公园ABCD所占面积S关于x的函数S(x)的解析式;
(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽该如何设计?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设正项数列{an}的前n项和是Sn , 若{an}和{ }都是等差数列,且公差相等,则a1=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 在同一平面内,且
(1)若 ,且 ,求m的值;
(2)若| |=3,且 ,求向量 的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】4月23日是世界读书日,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为读书谜,低于60分钟的学生称为非读书谜

1的值并估计全校3000名学生中读书谜大概有多少?(将频率视为概率)

2根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为读书谜与性别有关?

非读书迷

读书迷

合计

15

45

合计

附:.

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,小明想将短轴长为2,长轴长为4的一个半椭圆形纸片剪成等腰梯形ABDE,且梯形ABDE内接于半椭圆,DEAB,AB为短轴,OC为长半轴

(1)求梯形ABDE上底边DE与高OH长的关系式;

(2)若半椭圆上到H的距离最小的点恰好为C点,求底边DE的取值范围

查看答案和解析>>

同步练习册答案