精英家教网 > 高中数学 > 题目详情

【题目】已知函数)的图象与轴交点的横坐标构成一个公差为的等差数列,把函数的图象沿轴向左平移个单位,纵坐标扩大到原来的2倍得到函数的图象,则下列关于函数的命题中正确的是(

A.函数是奇函数B.的图象关于直线对称

C.上是增函数D.时,函数的值域是

【答案】C

【解析】

由三角函数恒等变换的公式和三角函数的图象变换,得到,再结合三角函数的图象与性质,逐项判定,即可求解.

由题意,函数

因为函数的图象与轴交点的横坐标构成一个公差为的等差数列,

可得,即,所以,即

把函数沿轴向左平移个单位,纵坐标扩大到原来的2倍得到函数的图象,可得函数

可得函数为非奇非偶函数,所以A不正确;

,所以不是函数的对称轴,所以B不正确;

,则,由正弦函数的性质,可得函数上单调递增,所以C正确;

,则

时,即,函数取得最小值,最小值为

时,即,函数取得最大值,最大值为

所以函数的值域为,所以D不正确.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某品牌经销商在一广场随机采访男性和女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:

微信控

非微信控

合计

男性

26

24

50

女性

30

20

50

合计

56

44

100

(1)根据以上数据,能否有95%的把握认为“微信控”与“性别”有关?

(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取的5人中“微信控”和“非微信控”的人数;

(3)从(2)中抽取的5位女性中,再随机抽取3人赠送礼品,试求抽取3人中恰有2人位“微信控”的概率.

参考公式: ,其中.

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数且,曲线的参数方程为为参数),以为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)求的普通方程及的直角坐标方程;

(2)若曲线与曲线分别交于点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学为了调查该校学生性别与身高的关系,对该校1000名学生按照的比例进行抽样调查,得到身高频数分布表如下:

男生身高频率分布表

男生身高

(单位:厘米)

频数

7

10

19

18

4

2

女生身高频数分布表

女生身高

(单位:厘米)

频数

3

10

15

6

3

3

1)估计这1000名学生中女生的人数;

2)估计这1000名学生中身高在的概率;

3)在样本中,从身高在的女生中任取3名女生进行调查,设表示所选3名学生中身高在的人数,求的分布列和数学期望.(身高单位:厘米)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,椭圆的离心率为,直线交于两点,长度的最大值为4.

1)求的方程;

2)直线轴的交点为,当直线变化(不与轴重合)时,若,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆C的中心在坐标原点O,其右焦点为,且点在椭圆C上.

求椭圆C的方程;

设椭圆的左、右顶点分别为ABM是椭圆上异于AB的任意一点,直线MF交椭圆C于另一点N,直线MB交直线Q点,求证:ANQ三点在同一条直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九世纪末,法国学者贝特朗在研究几何概型时提出了“贝特朗悖论”,即“在一个圆内任意选一条弦,这条弦的弦长长于这个圆的内接等边三角形边长的概率是多少?”贝特朗用“随机半径”、“随机端点”、“随机中点”三个合理的求解方法,但结果都不相同.该悖论的矛头直击概率概念本身,强烈地刺激了概率论基础的严格化.已知“随机端点”的方法如下:设A为圆O上一个定点,在圆周上随机取一点B,连接AB,所得弦长AB大于圆O的内接等边三角形边长的概率.则由“随机端点”求法所求得的概率为(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中a为非零常数.

讨论的极值点个数,并说明理由;

证明:在区间内有且仅有1个零点;的极值点,的零点且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数.

1)当时,证明,

2)若函数上存在极值点,求实数的取值范围.

查看答案和解析>>

同步练习册答案