【题目】已知平面内两个定点和点,是动点,且直线,的斜率乘积为常数,设点的轨迹为.
① 存在常数,使上所有点到两点距离之和为定值;
② 存在常数,使上所有点到两点距离之和为定值;
③ 不存在常数,使上所有点到两点距离差的绝对值为定值;
④ 不存在常数,使上所有点到两点距离差的绝对值为定值.
其中正确的命题是_______________.(填出所有正确命题的序号)
科目:高中数学 来源: 题型:
【题目】某中学高一期中考试结束后,从高一年级1000名学生中任意抽取50名学生,将这50名学生的某一科的考试成绩(满分150分)作为样本进行统计,并作出样本成绩的频率分布直方图(如图).
(1)由于工作疏忽,将成绩[130,140)的数据丢失,求此区间的人数及频率分布直方图的中位数;(结果保留两位小数)
(2)若规定考试分数不小于120分为优秀,现从样本的优秀学生中任意选出3名学生,参加学习经验交流会.设X表示参加学习经验交流会的学生分数不小于130分的学生人数,求X的分布列及期望;
(3)视样本频率为概率.由于特殊原因,有一个学生不能到学校参加考试,根据以往考试成绩,一般这名学生的成绩应在平均分左右.试根据以上数据,说明他若参加考试,可能得多少分?(每组数据以区问的中点值为代表)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“伟大的变革—庆祝改革开放周年大型展览”于年月日在中国国家博物馆闭幕,本次特展紧扣“改革开放年光辉历程”的主线,多角度、全景式描绘了我国改革开放年波澜壮阔的历史画卷.据统计,展览全程呈现出持续火爆的状态,现场观众累计达万人次,参展人数屡次创造国家博物馆参观纪录,网上展馆点击浏览总量达亿次.
下表是年月参观人数(单位:万人)统计表
日期 | ||||||||||||||
人数 | ||||||||||||||
日期 | ||||||||||||||
人数 |
根据表中数据回答下列问题:
(1)请将年月前半月(日)和后半月(日)参观人数统计对比茎叶图填补完整,并通过茎叶图比较两组数据方差的大小(不要求计算出具体值,得出结论即可);
(2)将年月参观人数数据用该天的对应日期作为样本编号,现从中抽样天的样本数据.若抽取的样本编号是以为公差的等差数列,且数列的第项为,求抽出的这个样本数据的平均值;
(3)根据国博以往展览数据及调查统计信息可知,单日入馆参观人数为(含,单位:万人)时,参观者的体验满意度最佳,在从中抽出的样本数据中随机抽取三天的数据,参观者的体验满意度为最佳的天数记为,求的分布列与期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在棱长为1的正方体中,E,F分别为线段CD和上的动点,且满足,则四边形所围成的图形(如图所示阴影部分)分别在该正方体有公共顶点的三个面上的正投影的面积之和( )
A. 有最小值B. 有最大值C. 为定值3D. 为定值2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆()的左、右焦点分别是,,点为的上顶点,点在上,,且.
(1)求的方程;
(2)已知过原点的直线与椭圆交于,两点,垂直于的直线过且与椭圆交于,两点,若,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某区的区人大代表有教师6人,分别来自甲、乙、丙、丁四个学校,其中甲校教师记为,乙校教师记为,丙校教师记为,丁校教师记为.现从这6名教师代表中选出3名教师组成十九大报告宣讲团,要求甲、乙、丙、丁四个学校中,每校至多选出1名.
(1)请列出十九大报告宣讲团组成人员的全部可能结果;
(2)求教师被选中的概率;
(3)求宣讲团中没有乙校教师代表的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某林场现有木材存量为,每年以25%的增长率逐年递增,但每年年底要砍伐的木材量为,经过年后林场木材存有量为
(1)求的解析式
(2)为保护生态环境,防止水土流失,该地区每年的森林木材存量不应少于,如果,那么该地区会发生水土流失吗?若会,要经过几年?(取)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com