精英家教网 > 高中数学 > 题目详情
5.椭圆$\frac{{x}^{2}}{10}+{y}^{z}$=1与抛物线yz=2px(p>0)有一个共同的焦点,则此抛物线的焦点到准线的距离为(  )
A.3B.4C.6D.12

分析 求出椭圆的焦点坐标,得到抛物线的焦点坐标,然后求解抛物线的焦点到准线的距离.

解答 解:椭圆$\frac{{x}^{2}}{10}+{y}^{z}$=1的焦点坐标(±3,0),椭圆与抛物线yz=2px(p>0)有一个共同的焦点,可得$\frac{p}{2}$=3,解得p=6,
抛物线的焦点到准线的距离为:6.
故选:C.

点评 本题考查圆锥曲线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知数列{an}满足下列条件,求通项公式:
(1)a1=3,a2=6,an+2=4an+1-4an
(2)a1=3,a2=6,an+2=2an+1+3an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=sin(ωx+$\frac{π}{4}$)(ω>0)的图象向左平移$\frac{π}{4}$个单位,得到的函数图象的对称中心与f(x)图象的对称中心重合,则ω的最小值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x2+ax+3,a∈R.
(1)当a=-4时,且x∈[0,2],求函数f(x)的值域;
(2)若关于x的方程f(x)=0在(1,+∞)上有两个不同实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若以不等式log${\;}_{\frac{1}{2}}$(x2-x-2)<log${\;}_{\frac{1}{2}}$(x-1)-1的解集为定义域,求函数y=4x-2x+1+5的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥P-ABCD的底面是边长是I的正方形,侧棱PD⊥平面ABCD,M、N分别是AB、PC的中点
(1)求证:MN∥平面PAD
(2)若MN=3,求四棱锥P-ABCD的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点(1,$\frac{3}{2}$),且离心率e=$\frac{1}{2}$.
(Ⅰ)求椭圆方程;
(Ⅱ)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M、N,且线段MN的垂直平分线过定点$P({\frac{1}{5},0})$,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lnx+$\frac{k}{x}$,k∈R.
(1)若k=1,求函数f(x)在点(1,f(1))处的切线方程;
(2)若k>$\frac{1}{2}$,令h(x)=f(x)+(k-1)x,求函数h(x)的单调区间;
(3)设g(x)=xf(x)-k,若对任意的两个实数x1,x2满足0<x1<x2,总存在x0>0,使得g′(x0)=$\frac{{g({x_1})-g({x_2})}}{{{x_1}-{x_2}}}$成立,证明:x0>x1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.曲线f(x)=x2+lnx在(1,f(1))处的切线的斜率为3.

查看答案和解析>>

同步练习册答案