精英家教网 > 高中数学 > 题目详情
(本题满分14分).如图所示,四棱锥PABCD的底面积ABCD是边长为1的菱形,
BCD=60°,ECD的中点,PA⊥底面积ABCDPA.
(Ⅰ)证明:平面PBE⊥平面PAB
(Ⅱ) 过PC中点F作FH//平面PBD, FH交平面ABCD 于H点,判定H点位于平面ABCD的那个具体位置?(无须证明)
(Ⅲ)求二面角ABEP的大小.
解:(Ⅰ)如图所示,连结BD,由ABCD是菱形且∠BCD=60°知,ΔBCD是等边三角形.因为ECD的中点,所以BECD,    2分

ABCD,所以BEAB.又因为PA⊥平面ABCD
BE平面ABCD,所以PABE.而PAABA
因此BE⊥平面PAB.    
BE平面PBE,所以平面PBE⊥平面PAB.  5分
(Ⅱ) 答1:H点在AC线段的4等分点上,且距离C点;9分
答2:H点与E点重合       9分
答3:取BC中点G,容易证明平面EFG//平面PBD,那么平面EFG内任意一直线都与平面PBD平行,就是H点在EG直线上都满足题意。
(Ⅲ)由(Ⅰ)知,BE⊥平面PABPB平面PAB,所以PBBE.
ABBE
所以∠PBA是二面角ABEP的平面角.                12分
在RtΔPAB中,tan∠PBA,∠PBA=60°.      13分
故二面角ABEP的大小是60°.                     14分 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12)如图,四棱锥的底面为正方形,
平面,,,分别为,
的中点.   (1)求证平面.(2)求异面直线所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥中,底面ABCD为菱形,底面的中点,的中点,求证:
(1)平面
(2).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知四棱锥的底面是边长为2的菱形,且
(Ⅰ)若O是AC与BD的交点,求证:平面
(Ⅱ)若点的中点,求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)如图,四棱锥的底面ABCD是正方形,底面ABCD,E,F分别是AC,PB的中点.
(I)证明:平面PCD;
(Ⅱ) 若求EF与平面PAC所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分8分)
如图,在四棱锥中,底面为直角梯形, 底面,且分别为的中点。
(Ⅰ)求证:
(Ⅱ)求与平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
在立体图形P-ABCD中,底面ABCD是一个直角梯形,∠BAD=90°,AD∥BC,
AB=BC=a,AD=PA=2a,E是边的中点,且PA⊥底面ABCD。
(1)求证:BE⊥PD
(2)求证:
(3)求异面直线AE与CD所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知m、n为两不重合直线,α、β是两平面,给出下列命题:
① 若n//m,m⊥β,则n⊥β;   ② 若n⊥β,α⊥β,则n//α;
③ 若n//α,α⊥β,则n⊥β;  ④ 
其中真命题的有(    )个。                             (   )
A.1     B.2  C.3 D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图:圆锥形的杯子上面放着半圆形的冰淇淋,当冰淇淋融化能否外溢_________.

查看答案和解析>>

同步练习册答案