精英家教网 > 高中数学 > 题目详情
已知x∈[-1,1],则方程2-|x|=cos2πx所有实数根的个数为
5
5
分析:在同一坐标系中,作出f(x)=2-|x|,g(x)=cos2πx的图象,根据图形的对称性,可得结论.
解答:解:设f(x)=2-|x|,g(x)=cos2πx.易知函数f(x)=2-|x|的图象关于y轴对称,函数g(x)=cos2πx的最小正周期为1,作出函数f(x)=2-|x|与函数g(x)=cos2πx的图象(如图所示).数形结合易知函数f(x)=2-|x|与函数g(x)=cos2πx的图象有5个交点,故方程2-|x|=cos2πx所有实数根的个数为5.

故答案为:5
点评:本题考查方程解的个数的求解,考查数形结合的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数g(x)=ax2-2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设f(x)=
g(x)
x

(Ⅰ)求a,b的值;
(Ⅱ)不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求实数k的范围;
(Ⅲ)方程f(|2x-1|)+k(
2
|2x-1|
-3)=0
有三个不同的实数解,求实数k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x=1是函数f(x)=mx3-3(m+1)x2+nx+1的一个极值点,其中m,n∈R,m<0,
(1)求m与n的关系式;
(2)求f(x)的单调区间;
(3)若m<-4,求证:函数y=f(x)的图象与x轴只有一个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•茂名一模)已知函数f(x)=ln(ex+a)(a为常数)求实数集R上的奇函数,函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数.
(1)求a的值;
(2)若g(x)≤t2+λt+1在x∈[-1,1]及λ所在的取值范围上恒成立,求t的取值范围;
(3)讨论关于x的方程
lnxf(x)
=x2-2ex+m
的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•内江二模)已知函数f(x)=ax+
b
x
+c(a>0)的图象在点(1,f(1))处的切线方程为y=x-1
(1)用a表示出b,c;
(2)求证:当0<a≤
1
2
;时,f(x)≤lnx在(0,1]上恒成立;
(3)证明:1+
1
2
+
1
3
+…+
1
n
>ln(n+1)+
n
2(n+1)

查看答案和解析>>

科目:高中数学 来源:湖南省月考题 题型:解答题

已知函数f(x)=exlnx
(1)求函数f(x)的单调区间;
(2)设x>0,求证:f(x+1)>e 2x﹣1
(3)设n∈N*,求证:ln(1×2+1)+ln(2×3+1)+…+ln[n(n+1)+1]>2n﹣3.

查看答案和解析>>

同步练习册答案