精英家教网 > 高中数学 > 题目详情

【题目】火箭少女101的新曲《卡路里》受到了广大听众的追捧,歌词积极向上的体现了人们对于健康以及完美身材的渴望.据有关数据显示,成年男子的体脂率在14%-25%之间.几年前小王重度肥胖,在专业健身训练后,身材不仅恢复正常,且走上美体路线.通过整理得到如下数据及散点图.

健身年数

1

2

3

4

5

6

体脂率(有分比)

32

20

12

8

6.4

4.4

3.4

3

2.5

2.1

1.9

1.5

1)根据散点图判断,哪一个模型更适宜作为体脂率关于健身年数的回归方程模型(给出选择即可)

2)根据(1)的判断结果与题目中所给数据,建立的回归方程.(保留一位小数)

3)再坚持3年,体脂率可达到多少.

参考公式:

参考数据:

【答案】1更适合(231.2%

【解析】

1)根据散点图,直接得出结论;

2)根据最小二乘法,先求出的回归方程,进而可化为的回归方程;

3)将代入所求的回归方程,即可得出结果.

l更适合;

2

3)三年后体脂率

可达到1.2%.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设集合{123,…,n}(其中n3n),将的所有3元子集(含有3个元素的子集)中的最小元素的和记为.

1)求的值;

2)试求的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】华为手机作为全球手机销量第二位,一直深受消费者喜欢.据调查数据显示,2019年度华为手机(含荣耀)在中国市场占有率接近!小明为了考查购买新手机时选择华为是否与年龄有一定关系,于是随机调查1002019年购买新手机的人,得到如下不完整的列表.定义30岁以下为年轻用户30岁以上为非年轻用户”.

购买华为

购买其他

总计

年轻用户

28

非年轻用户

24

60

总计

附:.

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

1)将列表填充完整,并判断是否有的把握认为购买手机时选择华为与年龄有关?

2)若采用分层抽样的方法从购买华为手机用户中抽出6个人,再随机抽2人,求恰好抽到的两人都是非年轻用户的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长,面积已经圆周率的基础,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为(参考数据:

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数为自然对数的底数,.

1)当时,求函数的图象在处的切线方程;

2)若函数在区间上具有单调性,求的取值范围;

3)若函数有且仅有个不同的零点,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)时,设的两个极值点为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的各项均为正数,前项和为,满足.

(1)求数列的通项公式;

(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平行四边形,平面平面,三角形为等边三角形,.分别为线段的中点.

1)求证:平面平面

2)求证:平面平面

3)求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,左、右焦点分别为为椭圆上异于长轴端点的点,且的最大面积为.

1)求椭圆的标准方程

2)若直线是过点点的直线,且与椭圆交于不同的点,是否存在直线使得点到直线,的距离,满足恒成立,若存在,求的值,若不存在,说明理由.

查看答案和解析>>

同步练习册答案