精英家教网 > 高中数学 > 题目详情
13.在△ABC中,bcosC+ccosB=asinA,则三角形ABC的形状是直角三角形.

分析 依题意,利用正弦定理和两角和的正弦公式,可知sin(B+C)=sinA=sin2A,易求sinA=1,从而可得答案.

解答 解:△ABC中,∵bcosC+ccosB=asinA,
∴由正弦定理得:sinBcosC+sinCcosB=sin2A,
即sin(B+C)=sin(π-A)=sinA=sin2A,又sinA>0,
∴sinA=1,A∈(0,π),
∴A=$\frac{π}{2}$.
∴△ABC的形状是直角三角形.
故答案为:直角三角形.

点评 本题考查三角形形状的判断,着重考查正弦定理与诱导公式,两角和的正弦公式的应用,考查转化思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.某同学用《几何画板》研究抛物线的性质:打开《几何画板》软件,绘制某抛物线E:y2=2px,在抛物线上任意画一个点S,度量点S的坐标(xS,yS),如图.
(Ⅰ)拖动点S,发现当xS=4时,yS=4,试求抛物线E的方程;
(Ⅱ)设抛物线E的顶点为A,焦点为F,构造直线SF交抛物线E于不同两点S、T,构造直线AS、AT分别交准线于M、N两点,构造直线MT、NS.经观察得:沿着抛物线E,无论怎样拖动点S,恒有MT∥NS.请你证明这一结论.
(Ⅲ)为进一步研究该抛物线E的性质,某同学进行了下面的尝试:在(Ⅱ)中,把“焦点F”改变为其它“定点G(g,0)(g≠0)”,其余条件不变,发现“MT与NS不再平行”.是否可以适当更改(Ⅱ)中的其它条件,使得仍有“MT∥NS”成立?如果可以,请写出相应的正确命题;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{1}{2}$x2+2ax,g(x)=3a2lnx+b.
(1)设两曲线y=f(x)与y=g(x)有公共点,且在公共点处的切线相同,若a>0,试建立b关于的函数关系式;
(2)若任意b∈[0,2],h(x)=f(x)+g(x)-(2a+b)x在(0,4)上为单调函数,求a的取值范围.
(3)a=-1,b=0,设正项数列{an}(n∈N*)满足a1=a(a>0),g(an+1)=f(an),证明:存在常数M,使得对于任意的n∈N*,都有an≤M.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{{3}^{x},x≤0}\end{array}\right.$,则f[f($\frac{1}{2}$)]=(  )
A.-3B.3C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若直角坐标平面内的两个不同点P、Q满足条件:
①P、Q都在函数y=f(x)的图象上;
②P、Q关于原点对称,则称点对[P,Q]是函数y=f(x)的一对“友好点对”(注:点对[P,Q]与[Q,P]看作同一对“友好点对”).已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x>0}\\{-{x}^{2}-4x,x≤0}\end{array}\right.$,则此函数的“友好点对”有(  ) 对.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.公差不为零的等差数列{an}的前n项和为Sn.若a4是a2与a9的等比中项,S3=12,则S10等于(  )
A.96B.108C.145D.160

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在数列{an}中,已知a1+a2+…+an=3n-1(n∈N*),则a12+a22+…+a102=(  )
A.(310-1)2B.$\frac{{{9^{10}}-1}}{2}$C.910-1D.$\frac{{{3^{10}}-1}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知α,$β∈({0,\frac{π}{2}})$,tanα=2,sin(α-β)=$\frac{3}{5}$.
(1)求$\frac{{2sina-cos({π-a})}}{{3sina-sin({\frac{π}{2}+a})}}$的值;
(2)求cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图所示,阴影部分是由曲线y=x2(x>0)与圆(x-1)2+y2=1构成的区域,在圆中任取一点M,则M点落在阴影部分区域的概率为$\frac{1}{4}$-$\frac{1}{3π}$.

查看答案和解析>>

同步练习册答案