精英家教网 > 高中数学 > 题目详情
13.已知点P(1,-2),Q(-1,-1),O(0,0),点M(x,y)在不等式组$\left\{\begin{array}{l}{x+2y-1≥0}\\{2x+y-5≤0}\\{y≤x+2}\end{array}\right.$所表示的平面区域内,则|$\overrightarrow{OP}$+$\overrightarrow{OQ}$+$\overrightarrow{OM}$|的取值范围是(  )
A.[$\frac{\sqrt{2}}{2}$,5]B.[$\frac{1}{2}$,5]C.[$\frac{\sqrt{2}}{2}$,$\sqrt{5}$]D.[$\frac{1}{2}$,25]

分析 分别作出不等式组表示的平面区域,由于|$\overrightarrow{OP}$+$\overrightarrow{OQ}$+$\overrightarrow{OM}$|2=$\sqrt{{x}^{2}+(y-3)^{2}}$,其几何意义表示到点A(0,3)的距离取值范围,通过图象观察,求得A(0,3)到直线的距离,即可得到所求最小值,到点D可得到所求最大值

解答 解:画出不等式组所表示的平面区域,
由于P(1,-2),Q(-1,-1),O(0,0),点M(x,y),
∴$\overrightarrow{OP}$+$\overrightarrow{OQ}$+$\overrightarrow{OM}$=(x,y-3),
∴|$\overrightarrow{OP}$+$\overrightarrow{OQ}$+$\overrightarrow{OM}$|2=$\sqrt{{x}^{2}+(y-3)^{2}}$,
其几何意义表示到点A(0,3)的距离取值范围,
则最小距离为点A到直线x-y+2=0的距离,即为$\frac{|0-3+2|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
则最大距离为点A到点D的距离,即为$\sqrt{{3}^{2}+(3+1)^{2}}$=5,
∴则|$\overrightarrow{OP}$+$\overrightarrow{OQ}$+$\overrightarrow{OM}$|的取值范围是[$\frac{\sqrt{2}}{2}$,5],
故选:A.

点评 本题考查两点的距离的最小值的求法,注意运用数形结合的思想方法,考查点到直线的距离公式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知椭圆的长轴长是短轴长的$\sqrt{2}$倍,则该椭圆的离心率等于(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=xlnx-ax,其中a为参数.
(1)求f(x)的极值;
(2)设g(x)=$\frac{x-1}{x{e}^{x}}$-lnx-$\frac{2}{x{e}^{2}}$,证明当x∈(0,+∞)时,g(x)<1恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设f(x)+g(x)=${∫}_{x}^{x+1}$2tdt,x∈R,若函数f(x)为奇函数,则g(x)的解析式可以为(  )
A.x3B.cosxC.1+xD.xex

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下面是2010年3月安徽省芜湖楼市商品住宅板块销售对比饼状图,由图可知,戈江区3月销售套数为(  )
A.350B.340C.330D.306

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在曲线y=x2+1的图象上取一点(1,2)及附近一点(1+△x,2+△y),则$\underset{lim}{△x→0}$$\frac{△y}{△x}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图所示,在三棱锥P-ABC的六条棱所在的直线中,异面直线共有(  )
A.2对B.3对C.4对D.6对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知球的半径为3,球内接圆锥的高为h(h>3),体积为V,
(1)写出以h表示V的函数关系式V(h);
(2)当h为何值时,V(h)有最大值,并求出该最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.把函数y=(x-2)2+1的图象向左平移1个单位,再向上平移1个单位后,所得图象对应的函数解析式是(  )
A.y=(x-3)2+2B.y=(x-3)2C.y=(x-1)2+2D.y=(x-1)2

查看答案和解析>>

同步练习册答案