精英家教网 > 高中数学 > 题目详情

【题目】下列命题中正确的是( )

A.ab是两条直线,且ab,那么a平行于经过b的任何平面

B.若直线a和平面α满足aα,那么aα内的任何直线平行

C.平行于同一条直线的两个平面平行

D.若直线ab和平面α满足abaαb不在平面α内,则bα

【答案】D

【解析】

由线面平行的判定定理,可以判断的真假;根据线面平行的定义及几何特征,可以判断的真假;根据线面平行的判定定理,可以判断的真假;进而得到答案.

解:如果是两条直线,且,那么平行于经过但不经过的任何平面,故错误;

如果直线和平面满足,那么内的任何直线平行或异面,故错误;

如果两条直线都平行于同一个平面,那么这两条直线可能平行,也可能相交,也可能异面,故错误;

选项:过直线作平面,设

.因此正确.

故选:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“作品获得一等奖”; 乙说:“作品获得一等奖”;

丙说:“,两项作品未获得一等奖”; 丁说:“作品获得一等奖”.

若这四位同学只有两位说的话是对的,则获得一等奖的作品是( )

A. 作品 B. 作品 C. 作品 D. 作品

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是边长为3的正方形,平面,且. 

(1)试在线段上确定一点的位置,使得平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面ABC,,E是BC的中点,

求异面直线AE与所成的角的大小;

若G为中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正四面体中,分别是的中点,下面四个结论:

//平面

平面

③平面平面

④平面平面

其中正确结论的序号是______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面为钝角三角形且垂直于底面,点的中点,.

(Ⅰ)求证:平面平面

(Ⅱ)若直线与底面所成的角为60°,求二面角余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥与三棱锥中,都是边长为2的等边三角形,分别为的中点,

(Ⅰ)试在平面内作一条直线,当时,均有平面(作出直线并证明);

(Ⅱ)求两棱锥体积之和的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数及函数(a,b,c∈R),若a>b>ca+b+c=0.

(1)证明:f(x)的图像与g(x)的图像一定有两个交点;

(2)请用反证法证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的两条高线所在直线方程为2x-3y+1=0和xy=0,顶点A(1,2).

求(1)BC边所在的直线方程;

(2)△ABC的面积.

查看答案和解析>>

同步练习册答案