精英家教网 > 高中数学 > 题目详情
11.(a+x)5展开式中x2的系数为80,则实数a的值为2.

分析 直接利用二项式定理的展开式的通项公式,求出x2的系数是80,得到方程,求出a的值

解答 解:二项展开式的通项Tr+1=C5ra5-rxr
令5-r=3可得r=2
∴a3C52=80
∴a=2
故答案为:2

点评 本题主要考查了利用二项展开式的通项求指定项,属于公式的简单应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.某农户计划种植黄瓜和冬瓜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜与冬瓜的产量、成本和售价如表:
年产量/亩年种植成本/亩每吨售价
黄瓜4吨1.2万元0.55万元
冬瓜6吨0.9万元0.3万元
为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜与冬瓜的种植面积(单位:亩)分别为(  )
A.50,0B.30,20C.20,30D.0,50

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=|x2+bx|(b∈R),当x∈[0,1]时,f(x)的最大值为M(b),则M(b)的最小值是(  )
A.3-2$\sqrt{2}$B.4-2$\sqrt{3}$C.1D.5-2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若数列{an}满足a1=$\sqrt{3}$,an+1=[an]+$\frac{1}{\{{a}_{n}\}}$([an]与{an}分别表示an的整数部分与小数部分),则a2016=(  )
A.3023+$\sqrt{3}$B.3023+$\frac{\sqrt{3}-1}{2}$C.3020+$\sqrt{3}$D.3020+$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.代数式$1+\frac{1}{{1+\frac{1}{1+…}}}$中省略号“…”代表以此方式无限重复,因原式是一个固定值,可以用如下方法求得:令原式=t,则1+$\frac{1}{t}$=t,则t2-t-1=0,取正值得t=$\frac{\sqrt{5}+1}{2}$,用类似方法可得$\sqrt{6+\sqrt{6+\sqrt{6+…}}}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系中,已知点A(-$\sqrt{3}$,0),B($\sqrt{3}$,0),直线MA,MB相交于点M,它们的斜率之积为常数m(m≠0),且△MAB的面积最大值为$\sqrt{3}$,设动点M的轨迹为曲线E.
(Ⅰ)求曲线E的方程;
(Ⅱ)过曲线E外一点Q作E的两条切线l1,l2,若它们的斜率之积为-1,那么$\overrightarrow{QA}$$•\overrightarrow{QB}$是否为定值?若是,请求出该值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知直线l1:ax-y+2a=0,l2:(2a-1)x+ay=0互相垂直,则a的值是(  )
A.0B.1C.0或1D.0或-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列四个函数中,在(1,+∞)上为增函数的是(  )
A.y=2-xB.y=x2-3xC.y=2x-2D.y=log2(x-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,动点M(x,y)满足条件$\sqrt{(x-1{)^2}+{y^2}}+\sqrt{(x+1{)^2}+{y^2}}=2\sqrt{2}$.
(1)求动点M的轨迹E的方程;
(2)设直线y=kx+m(m≠0)与曲线E分别交于A,B两点,与x轴、y轴分别交于C,D两点(且C、D在A、B之间或同时在A、B之外).问:是否存在定值k,对于满足条件的任意实数m,都有△OAC的面积与△OBD的面积相等,若存在,求k的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案