精英家教网 > 高中数学 > 题目详情

【题目】如图,已知四棱锥中,底面是边长为1的正方形,侧棱底面,且 是侧棱上的动点.

(1)求四棱锥的表面积;

(2)是否在棱上存在一点,使得平面;若存在,指出点的位置,并证明;若不存在,请说明理由.

【答案】1;(2的中点时, 平面.

【解析】试题分析:(1)先根据条件确定四棱锥各侧面形状,再根据直角三角形面积公式以及正方形面积公式求表面积(2)连接于点,当的中点时,由三角形中位线性质得,再根据线面平行判定定理证结论

试题解析:(1)四棱锥的底面是边长为1的正方形,侧棱底面,且

平面

.同理,

(2)当的中点时, 平面. 

证明:连接于点,连接,则在三角形中, 分别为的中点,

又∵平面 平面

平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x2+bx+c,不等式f(x)<0的解集是(0,5),若对于任意x∈[2,4],不等式f(x)+t≤2恒成立,则t的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[50,60),[60,70),…,[90,100]分成5组,制成如图所示频率分直方图.
(Ⅰ)求图中x的值;
(Ⅱ)已知满意度评分值在[90,100]内的男生数与女生数的比为2:1,若在满意度评分值为[90,100]的人中随机抽取4人进行座谈,设其中的女生人数为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为 ,(t为参数,0<θ<π),曲线C的极坐标方程为ρsin2α﹣2cosα=0.
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A,B两点,当θ变化时,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 . 

(1)若函数上是减函数,求实数的取值范围;

(2)是否存在整数 ,使得的解集恰好是,若存在,求出 的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知指数函数= 满足定义域为的函数=是奇函数.

(1)确定函数的解析式;

(2)若对任意的不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数为偶函数.

(1)求的解析式;

(2)若函数在区间上为单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2ax+2b
(1)若a,b都是从0,1,2,3四个数中任意取的一个数,求函数f(x)有零点的概率;
(2)若a,b都是从区间[0,3]中任取的一个数,求f(1)<0成立时的概率.

查看答案和解析>>

同步练习册答案