精英家教网 > 高中数学 > 题目详情
在△ABC中,已知a、b和锐角A,要使三角形有两解,则应满足的条件是(  )
分析:由正弦定理可得 sinB=
b•sinA
a
,再由 sinB=
b•sinA
a
>sinA,且 sinB=
b•sinA
a
<1,可得a、b的关系,从而得到结论.
解答:解:由正弦定理可得
a
sinA
=
b
sinB
,∴sinB=
b•sinA
a

由锐角A,要使三角形有两解,则 sinB=
b•sinA
a
>sinA,∴b>a.
再由 sinB=
b•sinA
a
<1 可得 bsinA<a.
综上可得 b>a>bsinA,
故选:D.
点评:本题主要考查正弦定理的应用,判断sinB=
b•sinA
a
>sinA,且sinB=
b•sinA
a
<1,是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,已知A、B、C成等差数列,求tg(
A
2
)+
3
tg(
A
2
)tg(
C
2
)+tg(
C
2
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知A=45°,a=2,b=
2
,则B等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知a=
3
,b=
2
,1+2cos(B+C)=0,求:
(1)角A,B; 
(2)求BC边上的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知A=60°,
AB
AC
=1,则△ABC的面积为
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知a=1,b=2,cosC=
34

(1)求AB的长;
(2)求sinA的值.

查看答案和解析>>

同步练习册答案