精英家教网 > 高中数学 > 题目详情
设x∈N+,求
C
x-1
2x-3
+
C
2x-3
x+1
的值.
考点:组合及组合数公式
专题:排列组合
分析:根据组合数的定义,求出x的可能取值,从而求出结果来.
解答: 解:根据题意,得;
2x-3≥x-1
x+1≥2x-3
x∈N+

4≥x≥2
x∈N+

∴x的取值为2、3、4;
∴当x=2时,
C
x-1
2x-3
+
C
2x-3
x+1
=
C
1
1
+
C
1
3
=4,
当x=3时,
C
x-1
2x-3
+
C
2x-3
x+1
=
C
2
3
+
C
3
4
=7,
当x=4时,
C
x-1
2x-3
+
C
2x-3
x+1
=
C
3
5
+
C
5
5
=11.
点评:本题考查了求组合数的应用问题,也考查了分类讨论的思想方法,是基础题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义区间(a,b)、[a,b)、(a,b]、[a,b]的长度d均为d=b-a,多个互无交集的区间的并集长度为各区间长度之和.例如,(1,2)∪[3,5)的长度d=(2-1)+(5-3)=3.用[x]表示不超过x的最大整数,例如[2]=2,[3.7]=3,[-1.2]=2.记{x}=x-[x],其中x∈R.设f(x)=[x]•{x},g(x)=x-1,若用d1,d2,d3分别表示不等式f(x)>g(x),方程f(x)=g(x),不等式f(x)<g(x)解集区间的长度,则当0≤x≤2015时,d1•d2•d3=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,将平面直角坐标系的格点(横、纵坐标均为整数的点)按如下规则表上数字标签:原点处标0,点(1,0)处标1,点(1,-1)处标2,点(0,-1)处标3,点(-1,-1)处标4,点(-1,0)标5,点(-1,1)处标6,点(0,1)处标7,以此类推,则标签20132的格点的坐标为(  )
A、(1007,1006)
B、(1006.1005)
C、(2013,2012)
D、(2012,2011)

查看答案和解析>>

科目:高中数学 来源: 题型:

半径为1cm,圆心角为150°的弧长为(  )
A、
5
3
cm
B、
3
cm
C、
5
6
cm
D、
6
cm

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列 {an}中,已知 a1=a2=1,an+an+2=λ+2an+1,n∈N*,λ为常数.
(1)证明:a1,a4,a5成等差数列;
(2)设 cn=2an+2-an,求数列 的前n项和 Sn
(3)当λ≠0时,数列 {an-1}中是否存在三项 as+1-1,at+1-1,ap+1-1成等比数列,且s,t,p也成等比数列?若存在,求出s,t,p的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:△ABC中,∠A=30°,D为边BC上一点,
AB
2=
AD
2+
BD
DC
,求∠B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-3x+2=0},集合B={x|m<x≤2m+9}.
(Ⅰ)若A⊆B,求实数m的取值范围;
(Ⅱ)若A∩B≠∅,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
AB
|=4,|
CA
|=3,且
AB
CA
夹角为
3
,则
AB
AC
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某产品的广告费用与销售额的统计数据如右表,根据表格可得回归方程
?
y
=bx+a
中的b为9.4,据此模型预报广告费用为6万元时销售额为
 
 万元.
广告费用x(万元)4235
销售额y(万元)49263954

查看答案和解析>>

同步练习册答案