(本题满分14分)设函数(1)当时,求的最大值;(2)令,(0≤3),其图象上任意一点处切线的斜率≤恒成立,求实数的取值范围; (3)当,,方程有唯一实数解,求正数的值。
(Ⅰ) (Ⅱ) ≥ (Ⅲ)
(1)依题意,知的定义域为(0,+∞)当时,,
(2′)
令=0,解得.(∵)因为有唯一解,所以
当时,,此时单调递增;当时,,此时单调递减。
所以的极大值为,此即为最大值。(5′)
(2),,则有≤,在上恒成立,
所以≥,(8′)
当时,取得最大值,所以≥(10′)
(3)因为方程有唯一实数解,所以有唯一实数解,
设,则. 令,得.
因为,,所以(舍去),,
当时,,在(0,)上单调递减,
当时,,在(,+∞)单调递增
当时,=0,取最小值.(12′)
则既
所以,因为,所以(*)
设函数,因为当时,是增函数,所以至多有一解。
因为,所以方程(*)的解为,即,解得.(14′)
科目:高中数学 来源: 题型:
(本题满分14分)
设函数,。
(1)若,过两点和的中点作轴的垂线交曲线于点,求证:曲线在点处的切线过点;
(2)若,当时恒成立,求实数的取值范围。
查看答案和解析>>
科目:高中数学 来源:2011——2012学年湖北省洪湖二中高三八月份月考试卷理科数学 题型:解答题
(本题满分14分)设椭圆的左、右焦点分别为F1与
F2,直线过椭圆的一个焦点F2且与椭圆交于P、Q两点,若的周长为。
(1)求椭圆C的方程;
(2)设椭圆C经过伸缩变换变成曲线,直线与曲线相切
且与椭圆C交于不同的两点A、B,若,求面积的取值范围。(O为坐标原点)
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省杭州市高三寒假作业数学卷三 题型:解答题
(本题满分14分)设M是由满足下列条件的函数构成的集合:“①方有实数根;②函数的导数满足”
(I)证明:函数是集合M中的元素;
(II)证明:函数具有下面的性质:对于任意,都存在,使得等式成立。
查看答案和解析>>
科目:高中数学 来源:2010-2011学年广东省揭阳市高三调研检测数学理卷 题型:解答题
本题满分14分)
设函数.
(1)若,求函数的极值;
(2)若,试确定的单调性;
(3)记,且在上的最大值为M,证明:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com