精英家教网 > 高中数学 > 题目详情
17.函数y=x2-2x+2,x∈[0,3]的值域为(  )
A.[1,+∞)B.[2,+∞)C.[1,5]D.[2,5]

分析 求出函数的对称轴,讨论对称轴和区间的关系,即可得到最值,进而得到值域.

解答 解:函数y=x2-2x+2=(x-1)2+1,
对称轴为x=1∈[0,3],
即有x=1时取得最小值1,
又0和3中,3与1的距离远,
可得x=3时,取得最小值,且为5,
则值域为[1,5].
故选:C.

点评 本题考查二次函数的值域,注意讨论对称轴和区间的关系,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.集合P={x|x2-3x+2=0},Q={x|mx-1=0},若P?Q,则实数m的值是{0,$\frac{1}{2}$,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设等差数列{an}的前n项和为Sn,且a3=2,a4=3.
(1)求数列{an}的通项公式;
(2)设bn=2${\;}^{{a}_{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.计算下列各题:
$(1){0.064^{-\frac{1}{3}}}-{(-\frac{7}{8})^0}+{[{(-2)^3}]^{-\frac{4}{3}}}+{16^{-0.75}}+{0.01^{\frac{1}{2}}}$
(2)2lg$\frac{5}{3}-lg\frac{7}{4}+2lg3+\frac{1}{2}$lg49.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若函数f(x)=(a-2)•ax为指数函数,则a=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数y=2x3-mx+1在区间[1,2]上单调,则实数m的取值范围为(-∞,6]∪[24,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)设a<0,角α的终边经过点P(-3a,4a),求sinα+2cosα的值;
(2)已知tanβ=2,求sin2β+2sinβcosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知连续型随机变量X的概率密度为f(x)=$\left\{\begin{array}{l}{x\\;(0≤x<1)}\\{2-x\\;(1≤x<2)}\\{0\\;(其他)}\end{array}\right.$.求X的分布函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.cos$\frac{π}{7}$+$cos\frac{3π}{7}$+cos$\frac{5π}{7}$=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案