精英家教网 > 高中数学 > 题目详情
求y=(
1
2
x定义域和值域和单调区间.
考点:指数函数的定义、解析式、定义域和值域
专题:函数的性质及应用
分析:利用指数函数的定义域值域与单调性即可得出.
解答: 解:y=(
1
2
x定义域为R,值域为(0,+∞),单调递增区间为R.
点评:本题考查了指数函数的定义域值域与单调性,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2x
2x+1
+a是奇函数.
(1)求实数a和f(-2)的值;
(2)判断f(x)在其定义域上的单调性,并用函数单调性的定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD中,底面ABCD为直角梯形,BC∥AD,∠BAD=90°,且PA=AB=BC=1,AD=2,PA⊥平面ABCD,E为AB的中点.
(I)证明:PC⊥CD;
(II)在线段PA上是否存在一点F,使EF∥平面PCD,若存在,求
AF
FP
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每一个学生一学期数学成绩的平均分(采用百分制),剔除平均分在30分以下的学生后,共有男生300名,女生200名,现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生成绩分为6组,得到如下所示频数分布表.
分数段[40,50)[50,60)[60,70)[70,80)[80,90)[90,100]
39181569
64510132
(1)估计男女生各自的成绩平均数(同一组数据用该区间中点值作代表),从计算结果看,判断数学成绩与性别是否有关.
(2)规定80分以上为优分(含80分),请你根据已知条件作出2×2列联表,并判断是否有90%以上的把握认为“数学成绩与性别有关”.
优分非优分合计
男生   
女生   
合计  100
附表及公式
P(k2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

当0<a<1时满足|loga(x+1)>|loga(x-1)|的x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(2,-3,5),
b
=(-3,1,-4),求
a
+
b
,6
a
a
b
,|
a
-2
b
|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a,b,c为常数),满足条件
(1)图象过原点;
(2)f(1+x)=f(1-x);
(3)方程f(x)=x有两个不等的实根试求f(x)的解析式并求x∈[-1,4]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的不等式3x2+2ax+b≤0在区间[-1,0]上恒成立,则a2+b2-1的取值范围是(  )
A、[
9
4
,+∞)
B、(-1,
9
4
]
C、[
4
5
,+∞)
D、(-1,
4
5
]

查看答案和解析>>

科目:高中数学 来源: 题型:

与直线l:3x+4y-4=0、直线m:3x+4y+6=0都相切,且圆心在直线x+2y+1=0的圆的标准方程是
 

查看答案和解析>>

同步练习册答案