分析 取点,计算$\frac{PA}{PB}$,利用$\frac{PA}{PB}$为定值,建立方程,即可求出b.
解答 解:取点(0,-b),可得$\frac{PA}{PB}$=$\frac{\sqrt{4+{b}^{2}}}{\sqrt{16+{b}^{2}}}$
取点(-4,4-b),可得$\frac{PA}{PB}$=$\frac{\sqrt{4+(4-b)^{2}}}{\sqrt{64+(4-b)^{2}}}$,
∴$\frac{\sqrt{4+{b}^{2}}}{\sqrt{16+{b}^{2}}}$=$\frac{\sqrt{4+(4-b)^{2}}}{\sqrt{64+(4-b)^{2}}}$,
∴4b2+8b=0,
∴b=0或-2.
当b=-2时,设P(m,n),由PA=tPB,可得$\sqrt{(m+2)^{2}+{n}^{2}}$=t$\sqrt{(m-4)^{2}+{n}^{2}}$,
又(m+4)2+(n-2)2=16,化简整理,可得t无解.
故答案为:0.
点评 本题考查直线与圆的位置关系,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com