【题目】已知椭圆:的中心为,一个方向向量为的直线与只有一个公共点
(1)若且点在第二象限,求点的坐标;
(2)若经过的直线与垂直,求证:点到直线的距离;
(3)若点、在椭圆上,记直线的斜率为,且为直线的一个法向量,且求的值.
【答案】(1)(2)见解析(3)9
【解析】
(1)设直线的方程为,代入椭圆方程,可得的方程,运用直线和椭圆只有一个公共点,可得,化简整理,解方程可得的坐标;
(2)设直线,运用(1)求得到直线的距离公式,再由基本不等式可得最大值,即可得证;
(3)直线的方程为,代入椭圆方程,可得交点,求得,同样将直线代入椭圆方程求得的坐标,可得,化简整理即可得到所求值.
解:(1)设直线的方程为,代入椭圆方程,
可得,
直线与只有一个公共点,可得,
即有,
化简可得,
由可得,
由点在第二象限,可得,
即为;
(2)证明:设直线,
由(1)可得,,
则点到直线的距离
,
当且仅当时,取得等号;
(3)由题意可得直线的方程为,
代入椭圆方程,可得,
即有,,
即有,
将直线的方程,代入椭圆方程可得,
,,
即有,
则.
科目:高中数学 来源: 题型:
【题目】甲、乙两位同学参加诗词大赛,各答3道题,每人答对每道题的概率均为,且各人是否答对每道题互不影响.
(Ⅰ)用表示甲同学答对题目的个数,求随机变量的分布列和数学期望;
(Ⅱ)设为事件“甲比乙答对题目数恰好多2”,求事件发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】部分与整体以某种相似的方式呈现称为分形,一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.分形几何学不仅让人们感悟到科学与艺木的融合,数学与艺术审美的统一,而且还有其深刻的科学方法论意义.如图,由波兰数学家谢尔宾斯基1915年提出的谢尔宾斯基三角形就属于-种分形,具体作法是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程逐次得到各个图形.
若在图④中随机选取-点,则此点取自阴影部分的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线(),过点()的直线与交于、两点.
(1)若,求证:是定值(是坐标原点);
(2)若(是确定的常数),求证:直线过定点,并求出此定点坐标;
(3)若的斜率为1,且,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,是椭圆:的左右两个焦点,过的直线与交于,两点(在第一象限),的周长为8,的离心率为.
(1)求的方程;
(2)设,为的左右顶点,直线的斜率为,的斜率为,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com