精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的中心为,一个方向向量为的直线只有一个公共点

1)若且点在第二象限,求点的坐标;

2)若经过的直线垂直,求证:点到直线的距离

3)若点在椭圆上,记直线的斜率为,且为直线的一个法向量,且的值.

【答案】12)见解析(39

【解析】

1)设直线的方程为,代入椭圆方程,可得的方程,运用直线和椭圆只有一个公共点,可得,化简整理,解方程可得的坐标;

2)设直线,运用(1)求得到直线的距离公式,再由基本不等式可得最大值,即可得证;

3)直线的方程为,代入椭圆方程,可得交点,求得,同样将直线代入椭圆方程求得的坐标,可得,化简整理即可得到所求值.

解:(1)设直线的方程为,代入椭圆方程

可得

直线只有一个公共点,可得

即有

化简可得

可得

由点在第二象限,可得

即为

(2)证明:设直线

由(1)可得

则点到直线的距离

当且仅当时,取得等号;

(3)由题意可得直线的方程为

代入椭圆方程,可得

即有

即有

将直线的方程,代入椭圆方程可得,

即有

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两位同学参加诗词大赛,各答3道题,每人答对每道题的概率均为,且各人是否答对每道题互不影响.

)用表示甲同学答对题目的个数,求随机变量的分布列和数学期望;

)设为事件“甲比乙答对题目数恰好多2”,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面分别是的中点.

(1)求三棱锥的体积;

(2)若异面直线所成的角为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:

1)求

2)求证:数列是等差数列,并求的通项公式;

3)设,若不等式对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形,是等边三角形,是直角三角形,中点.

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】部分与整体以某种相似的方式呈现称为分形,一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.分形几何学不仅让人们感悟到科学与艺木的融合,数学与艺术审美的统一,而且还有其深刻的科学方法论意义.如图,由波兰数学家谢尔宾斯基1915年提出的谢尔宾斯基三角形就属于-种分形,具体作法是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程逐次得到各个图形.

若在图④中随机选取-点,则此点取自阴影部分的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】任意实数,定义,设函数,数列是公比大于0的等比数列,且,则____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线),过点)的直线交于两点.

1)若,求证:是定值(是坐标原点);

2)若是确定的常数),求证:直线过定点,并求出此定点坐标;

3)若的斜率为1,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆的左右两个焦点,过的直线与交于两点(在第一象限),的周长为8的离心率为.

1)求的方程;

2)设的左右顶点,直线的斜率为的斜率为,求的取值范围.

查看答案和解析>>

同步练习册答案