(Àí)ÒÑÖªº¯Êýf(x)=xlnx.

(1)Çóº¯Êýf(x)µÄµ¥µ÷Çø¼äºÍ×îСֵ;

(2)µ±b£¾0ʱ£¬ÇóÖ¤:bb¡Ý(ÆäÖÐe=2.718 28¡­ÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý);

(3)Èôa£¾0,b£¾0£¬Ö¤Ã÷f(a)+(a+b)ln2¡Ýf(a+b)-f(b).

(ÎÄ)ÒÑÖªÏòÁ¿m=(x2,y-cx),n=(1,x+b)(x,y,b,c¡ÊR)ÇÒm¡În,°ÑÆäÖÐx,yËùÂú×ãµÄ¹Øϵʽ¼ÇΪy=f(x).Èôf¡ä(x)Ϊf(x)µÄµ¼º¯Êý,F(x)=f(x)+af¡ä(x)(a£¾0),ÇÒF(x)ÊÇRÉϵÄÆ溯Êý.

(1)ÇóºÍcµÄÖµ.

(2)Çóº¯Êýf(x)µÄµ¥µ÷µÝ¼õÇø¼ä(ÓÃ×Öĸa±íʾ).

(3)µ±a=2ʱ,Éè0£¼t£¼4ÇÒt¡Ù2,ÇúÏßy=f(x)ÔÚµãA(t,f(t))´¦µÄÇÐÏßÓëÇúÏßy=f(x)ÏཻÓÚµãB(m,f(m))(AÓëB²»ÖغÏ),Ö±Ïßx=tÓëy=f(m)ÏཻÓÚµãC,¡÷ABCµÄÃæ»ýΪS,ÊÔÓÃt±íʾ¡÷ABCµÄÃæ»ýS(t),²¢ÇóS(t)µÄ×î´óÖµ.

´ð°¸£º(Àí)½â:(1)¡ßf¡ä(x)=lnx+1(x£¾0),

Áîf¡ä(x)¡Ý0,¼´lnx¡Ý-1=lne-1.¡ße=2.718 28¡­£¾1,¡ày=lnxÔÚ(0,+¡Þ)ÉÏÊǵ¥µ÷µÝÔöº¯Êý.

¡àx¡Ýe-1=.¡àx¡Ê£Û,+¡Þ).ͬÀí,Áîf¡ä(x)¡Ü0¿ÉµÃx¡Ê(0,£Ý.¡àf(x)µÄµ¥µ÷µÝÔöÇø¼äΪ£Û,+¡Þ),µ¥µ÷µÝ¼õÇø¼äΪ(0,£Ý.

ÓÉ´Ë¿ÉÖªy=f(x)min=f()=.

(2)Ö¤Ã÷:ÓÉ(1)¿ÉÖªµ±b£¾0ʱ,ÓÐf(b)¡Ýf(x)min=,¡àblnb¡Ý,

¼´ln(bb)¡Ý=ln().¡àbb¡Ý().

(3)Ö¤Ã÷:½«f(a)+(a+b)ln2¡Ýf(a+b)-f(b)±äÐÎ,µÃf(a)+f(b)¡Ýf(a+b)-(a+b)ln2,

¼´Ö¤f(a)+f(a+b-a)¡Ýf(a+b)-(a+b)ln2.É躯Êýg(x)=f(x)+f(k-x)(k£¾0).

¡ßf(x)=xlnx,¡àg(x)=xlnx+(k-x)ln(k-x).¡à0£¼x£¼k.¡ßg¡ä(x)=lnx+1-ln(k-x)-1=ln,

Áîg¡ä(x)£¾0,ÔòÓУ¾1£¾0£¼x£¼k.

¡àº¯Êýg(x)ÔÚ£Û,k)Éϵ¥µ÷µÝÔö,ÔÚ(0,£ÝÉϵ¥µ÷µÝ¼õ.¡àg(x)µÄ×îСֵΪg(),¼´×ÜÓÐg(x)¡Ýg().¶øg()=f()+f(k-)=kln=k(lnk-ln2)=f(k)-kln2,¡àg(x)¡Ýf(k)-kln2,

¼´f(x)+f(k-x)¡Ýf(k)-kln2.Áîx=a,k-x=b,Ôòk=a+b.¡àf(a)+f(b)¡Ýf(a+b)-(a+b)ln2.

¡àf(a)+(a+b)ln2¡Ýf(a+b)-f(b).

 (ÎÄ)½â£º(1)¡ßf(x)=x3+bx2+cxz¡àf¡ä(x)=3x2+2bx+c.

¡ßF(x)=f(x)+af¡ä(x)=x3+(b+3a)x2+(c+2ab)x+acΪÆ溯Êý,ÓÉF(-x)=-F(x),¿ÉµÃb+3a=0,ac=0.

¡ßa£¾0,¡àb=-3a,c=0.¡à=-3,c=0.

(2)ÓÉ(1)¿ÉµÃf(x)=x3-3ax2,¡àf¡ä(x)=3x(x-2a).Áî3x(x-2a)¡Ü0,½âµÃ0¡Üx¡Ü2a.¡àº¯Êýf(x)µÄµ¥µ÷µÝ¼õÇø¼äΪ£Û0,2a£Ý.

(3)µ±a=2ʱ,ÇúÏßy=f(x)ÔÚµãA(t,f(t))´¦µÄÇÐÏß·½³ÌΪy-f(t)=f¡ä(t)(x-t),kAB=f¡ä(t)=3t(t-4).

ÁªÁ¢·½³Ì×黯¼ò,µÃf(x)-f(t)=f¡ä(t)(x-t),

¼´x3-6x2-t3+6t2=(3t2-12t)(x-t),(x-t)(x2+xt+t2-6x-6t)=(x-t)(3t2-12t).

¡ßA¡¢B²»ÖغÏ,¡àx¡Ùt.¡àx2+xt+t2-6x-6t=3t2-12t.¡àx2+(t-6)x-2t2+6t=0,

¼´(x-t)(x+2t-6)=0.¡ßx¡Ùt,¡àx=-2t+6.ÓÖÁíÒ»½»µãΪB(m,f(m)),¡àm=-2t+6.

S(t)=|m-t|¡¤|f(m)-f(t)|=(m-t)2¡¤|kAB|=(t-2)2¡¤3t(4-t)=(t-2)2(4-t)t,ÆäÖÐt¡Ê(0,2)¡È(2,4).

Áîh(t)=(t-2)2(4-t)t,ÆäÖÐt¡Ê(0,2)¡È(2,4).¡ßh(t)=-(t4-8t3+20t2-16t),

¡àh¡ä(t)=-4(t3-6t2+10t-4)=-4(t-2)(t-2+)(t-2-).

ÓɽâµÃ0£¼t¡Ü2-,»ò2£¼t¡Ü2+.

ÓÚÊǺ¯Êýh(t)ÔÚÇø¼ä(0,2-£Ý¡¢(2,2+£ÝÉÏÊǵ¥µ÷Ôöº¯Êý;ÔÚÇø¼ä£Û2-,2)¡¢£Û2+,4)ÉÏÊǵ¥µ÷¼õº¯Êý.µ±t=2-ºÍt=2+ʱ,º¯Êýy=h(t)Óм«´óÖµ.

¡àh(t)max=h(2-)=h(2+)=4.¡àS(t)max=54.

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍø¾«Ó¢¼Ò½ÌÍø£¨Àí£©ÒÑÖªº¯Êýf(x)=
ln(2-x2)
|x+2|-2
£®
£¨1£©ÊÔÅжÏf£¨x£©µÄÆæżÐÔ²¢¸øÓèÖ¤Ã÷£»
£¨2£©ÇóÖ¤£ºf£¨x£©ÔÚÇø¼ä£¨0£¬1£©µ¥µ÷µÝ¼õ£»
£¨3£©Èçͼ¸ø³öµÄÊÇÓ뺯Êýf£¨x£©Ïà¹ØµÄÒ»¸ö³ÌÐò¿òͼ£¬ÊÔ¹¹ÔìÒ»¸ö¹«²î²»ÎªÁãµÄµÈ²îÊýÁÐ
{an}£¬Ê¹µÃ¸Ã³ÌÐòÄÜÕý³£ÔËÐÐÇÒÊä³öµÄ½á¹ûÇ¡ºÃΪ0£®Çë˵Ã÷ÄãµÄÀíÓÉ£®
£¨ÎÄ£©Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬·½³ÌΪx2+y2+Dx+Ey+F=0µÄÔ²MµÄÄÚ½ÓËıßÐÎABCDµÄ¶Ô½ÇÏßACºÍBD»¥Ïà´¹Ö±£¬ÇÒACºÍBD·Ö±ðÔÚxÖáºÍyÖáÉÏ£®
£¨1£©ÇóÖ¤£ºF£¼0£»
£¨2£©ÈôËıßÐÎABCDµÄÃæ»ýΪ8£¬¶Ô½ÇÏßACµÄ³¤Îª2£¬ÇÒ
AB
AD
=0
£¬ÇóD2+E2-4FµÄÖµ£»
£¨3£©ÉèËıßÐÎABCDµÄÒ»Ìõ±ßCDµÄÖеãΪG£¬OH¡ÍABÇÒ´¹×ãΪH£®ÊÔÓÃƽÃæ½âÎö¼¸ºÎµÄÑо¿·½·¨ÅÐ
¶ÏµãO¡¢G¡¢HÊÇ·ñ¹²Ïߣ¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨Àí£©ÒÑÖªº¯Êýf(x)=
sin2x-(a-4)(sinx-cosx)+a
µÄ¶¨ÒåÓòΪ{x|2k¦Ð¡Üx¡Ü2k¦Ð+
¦Ð
2
£¬k¡ÊZ}
£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•ÆÕÍÓÇøÈýÄ££©£¨Àí£©ÒÑÖªº¯Êýf(x)=
sin¦Ðxx¡Ê[0£¬1]
log2011xx¡Ê(1£¬+¡Þ)
ÈôÂú×ãf£¨a£©=f£¨b£©=f£¨c£©£¬£¨a¡¢b¡¢c»¥²»ÏàµÈ£©£¬Ôòa+b+cµÄÈ¡Öµ·¶Î§ÊÇ
£¨2£¬2012£©
£¨2£¬2012£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•ÆÕÍÓÇøÈýÄ££©£¨Àí£©ÒÑÖªº¯Êýf(x)=
ln(2-x2)|x+2|-2
£®
£¨1£©ÊÔÅжÏf£¨x£©µÄÆæżÐÔ²¢¸øÓèÖ¤Ã÷£»
£¨2£©ÇóÖ¤£ºf£¨x£©ÔÚÇø¼ä£¨0£¬1£©µ¥µ÷µÝ¼õ£»
£¨3£©ÓÒͼ¸ø³öµÄÊÇÓ뺯Êýf£¨x£©Ïà¹ØµÄÒ»¸ö³ÌÐò¿òͼ£¬ÊÔ¹¹ÔìÒ»¸ö¹«²î²»ÎªÁãµÄµÈ²îÊýÁÐ{an}£¬Ê¹µÃ¸Ã³ÌÐòÄÜÕý³£ÔËÐÐÇÒÊä³öµÄ½á¹ûÇ¡ºÃΪ0£®Çë˵Ã÷ÄãµÄÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2009•¼Î¶¨Çøһģ£©£¨Àí£©ÒÑÖªº¯Êýf(x)=log2
2
x
1-x
£¬P1£¨x1£¬y1£©¡¢P2£¨x2£¬y2£©ÊÇf£¨x£©Í¼ÏóÉÏÁ½µã£®
£¨1£©Èôx1+x2=1£¬ÇóÖ¤£ºy1+y2Ϊ¶¨Öµ£»
£¨2£©ÉèTn=f(
1
n
)+f(
2
n
)+¡­+f(
n-1
n
)
£¬ÆäÖÐn¡ÊN*ÇÒn¡Ý2£¬ÇóTn¹ØÓÚnµÄ½âÎöʽ£»
£¨3£©¶Ô£¨2£©ÖеÄTn£¬ÉèÊýÁÐ{an}Âú×ãa1=2£¬µ±n¡Ý2ʱ£¬an=4Tn+2£¬ÎÊÊÇ·ñ´æÔÚ½Ça£¬Ê¹²»µÈʽ(1-
1
a1
)(1-
1
a2
)
¡­(1-
1
an
)£¼
sin¦Á
2n+1
¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ö½Ç¦ÁµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸