精英家教网 > 高中数学 > 题目详情

【题目】有如下3个命题;

①双曲线上任意一点到两条渐近线的距离乘积是定值;

②双曲线的离心率分别是,则是定值;

③过抛物线的顶点任作两条互相垂直的直线与抛物线的交点分别是,则直线过定点;其中正确的命题有(  )

A. 3个 B. 2个 C. 1个 D. 0个

【答案】A

【解析】

求得双曲线的渐近线方程,设出P(m,n),运用点到直线的距离公式,化简可得定值,即可判断①;

运用双曲线的离心率公式和基本量的关系,化简可得定值,可判断②;

可设A(s,),B(t,),求得直线AB的斜率和st=﹣4p2,运用点斜式方程可得直线AB的方程,化简可得定点,即可判断③.

双曲线(a>0,b>0)上任意一点P,设为(m,n),

两条渐近线方程为y=±x,可得两个距离的乘积为=

由b2m2﹣a2n2=a2b2,可得两个距离乘积是定值

双曲线=1与(a>0,b>0)的离心率分别是e1,e2

即有e12=,e22=,可得为定值1;

过抛物线x2=2py(p>0)的顶点任作两条互相垂直的直线与抛物线的交点分别是A,B,

可设A(s,),B(t,),由OAOB可得st+=0,即有st=﹣4p2

kAB==,可得直线AB的方程为y﹣=(x﹣s),即为y=x+2p,

则直线AB过定点(0,2p).

三个命题都正确.

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(
A.命题“x∈R,ex>0”的否定是“x∈R,ex>0”
B.命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题
C.“x2+2x≥ax在x∈[1,2]上恒成立”“(x2+2x)min≥(ax)max在x∈[1,2]上恒成立”
D.命题“若a=﹣1,则函数f(x)=ax2+2x﹣1只有一个零点”的逆命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线过点,圆.

(1)当直线与圆相切时,求直线的一般方程;

(2)若直线与圆相交,且弦长为,求直线的一般方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,在其定义域上既是偶函数又在(0,+∞)上单调递减的是(
A.y=x2
B.y=x+1
C.y=﹣lg|x|
D.y=﹣2x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题方程有两个不等的实根;命题方程无实根,若“”为真,“”为假,则实数的取值范围为___________.(写成区间的形式)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面,是边长为2的等边三角形,的中点,且

(Ⅰ)求证:平面

(Ⅱ)求证:平面平面

(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动点在抛物线上,过点垂直于轴,垂足为,设.

(Ⅰ)求点的轨迹的方程;

(Ⅱ)若点上的动点,过点作抛物线的两条切线,切点分别为,设点到直线的距离为,求的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两台机床同时生产一种零件,10天中,两台机床每天出的次品数分别如下图所示。

0

1

0

2

2

0

3

1

2

4

2

3

1

1

0

2

1

1

0

1

从数据上看, ________________机床的性能较好(填“甲”或者“乙”).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知焦点在轴上的椭圆过点,且离心率为.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)若直线)与椭圆C交于两点AB,点D满足,经过点D及点的直线的斜率为,求证:.

查看答案和解析>>

同步练习册答案