【题目】对于函数,若存在实数,使=成立,则称为的不动点.
⑴当时,求的不动点;
(2)当时,函数在内有两个不同的不动点,求实数的取值范围;
(3)若对于任意实数,函数恒有两个不相同的不动点,求实数的取值范围.
【答案】(1)f(x)的不动点为-1,2;(2)-4<b<4或4<b<6;(3)0<a<2.
【解析】试题分析:本题为新定义信息题,把a=2,b=-2代入后得到函数f(x)的解析式,假设存在不动点,根据不动点定义,满足,解方程求出不动点;当时,函数在内有两个不同的不动点,说明方程在区间(-2,3)内有两个不等式实数根;同理解决第三步.
试题解析:
(1)当a=2,b=-2时,f(x)=2x2-x-4
∴ 由f(x)=x得x2-x-2=0, ∴ x=-1或x=2.
∴ f(x)的不动点为-1,2.
(2) 当a=2时,f(x)=2x2+(b+1)x+b-2,
由题意得f(x)=x在(-2,3)内有两个不同的不动点,
即方程 2x2+bx+b-2=0 在(-2,3)内的两个不相等的实数根.
设 g(x)=2x2+bx+b-2,
∴ 只须满足 ∴
∴ -4<b<4或4<b<6
(3)由题意得:对于任意实数b,方程 ax2+bx+b-2=0总有两个不相等的实数解.
∴ ∴ b2-4ab+8a>0对b∈R恒成立.
∴16a2-32a<0 ∴ 0<a<2.
科目:高中数学 来源: 题型:
【题目】已知数列中,,且点在直线上.
⑴求数列的通项公式;
⑵若函数(,且),求函数的最小值;
⑶设,表示数列的前项和,试问:是否存在关于的整式,使得对于一切不小于2的自然数恒成立?若存在,写出的解析式,并加以证明;若不存在,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)已知椭圆C: 的离心率为,右焦点为(,0).(1)求椭圆C的方程;(2)若过原点作两条互相垂直的射线,与椭圆交于A,B两点,求证:点O到直线AB的距离为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)证明:函数是偶函数;
(2)利用绝对值及分段函数知识,将函数解析式写成分段函数的形式,然后画出函数图像(草图),并写出函数的值域;
(3)在同一坐标系中画出直线,观察图像写出不等式的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,有一块半椭圆形钢板,其长半轴为,短半轴为,计划将此钢板切割成等腰梯形的形状,下底是半椭圆的短轴,上底的端点在椭圆上,记,梯形面积为.
(Ⅰ)求面积关于变量的函数表达式,并写出定义域;
(Ⅱ)求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用长为18 m的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:
表1:男生
表2:女生
(1)从表二的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率;
(2)由表中统计数据填写下边2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.
参考数据与公式:
K2=,其中n=a+b+c+d.
临界值表:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com