精英家教网 > 高中数学 > 题目详情
(2012•德州一模)已知暗箱中开始有3个红球,2个白球.现每次从暗箱中取出1个球后,再将此球和它同色的另外5个球一起放回箱中.
(I)求第2次取出白球的概率;
(Ⅱ)若取出白球得2分,取出红球得3分,设连续取球2次的得分值为X,求X的分布列和数学期望.
分析:(I)第2次取出白球的事件包括:“第1次取出红球第二次取出白球”、“两次均取出白球”,且互斥,由此可求第2次取出白球的概率;
(Ⅱ)确定X的取值,计算其概率,从而可得X的分布列和数学期望.
解答:解:(I)第2次取出白球的事件包括:“第1次取出红球第二次取出白球”记为事件A,“两次均取出白球”记为事件B,则A,B互斥,所以第2次取出白球的概率为P=P(A)+P(B)=
3
5
×
2
10
+
2
5
×
7
10
=
2
5

(Ⅱ)X的所有可能取值为4,5,6
P(X=4)=
2
5
×
7
10
=
7
25
;P(X=5)=
2
5
×
3
10
+
3
5
×
2
10
=
6
25
;P(X=6)=
3
5
×
8
10
=
12
25

∴X的分布列如下:
 X  4  5  6
 P  
7
25
 
6
25
 
12
25
∴EX=4×
7
25
+5×
6
25
+6×
12
25
=
26
5
点评:本题考查概率的性质和应用,解题时要注意离散型随机变量的分布列和期望的应用,合理地运用等可能事件的知识进行解题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•德州一模)定义运算
.
ab
cd
.
=ad-bc
,函数f(x)=
.
x-12
-xx+3
.
图象的顶点是(m,n),且k、m、n、r成等差数列,则k+r=
-9
-9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德州一模)若a=log20.9,b=3-
1
3
,c=(
1
3
)
1
2
则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德州一模)已知
x+y-5≤0
y≥x
x≥1
,则z=2x+3y的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德州一模)对于直线m,n和平面α,β,γ,有如下四个命题:
(1)若m∥α,m⊥n,则n⊥α
(2)若m⊥α,m⊥n,则n∥α
(3)若α⊥β,γ⊥β,则α∥γ
(4)若m⊥α,m∥n,n?β,则α⊥β
其中真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德州一模)已知函数f(x)=
3
sinxcosx-cos2x+
1
2
(x∈R)

(I)求函数f(x)的最小正周期及在区间[0,
π
2
]
上的值域;
(Ⅱ)在△ABC中,角A、B、C所对的边分别是a、b、c,又f(
A
2
+
π
3
)=
4
5
,b=2,△ABC
的面积等于3,求边长a的值.

查看答案和解析>>

同步练习册答案