精英家教网 > 高中数学 > 题目详情
18.求值:
(1)($\frac{3}{5}$)0+2-2•|-0.064|${\;}^{\frac{1}{3}}$-($\frac{9}{4}$)${\;}^{\frac{1}{2}}$;
(2)log2(47×25)+log26-log23.

分析 (1)利用指数幂的运算法则即可得出.
(2)由对数的运算法则,结合log22=1,log22m=m,则可直接求出结果.

解答 解:(1)($\frac{3}{5}$)0+2-2•|-0.064|${\;}^{\frac{1}{3}}$-($\frac{9}{4}$)${\;}^{\frac{1}{2}}$
=1+$\frac{1}{4}$×$\frac{4}{10}$-$\frac{3}{2}$
=-$\frac{2}{5}$.
(2)log2(47×25)+log26-log23.
=log247+log225+log2$\frac{6}{3}$
=14+5+1
=20.

点评 本题考查了指数幂的运算法则,考查对数的基本运算、对数的运算法则,属基本运算的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.设集合A={x|a-3<x<a+3},B={x|x<-1或x>3}.
(1)若a=3,求A∪B;
(2)若A∪B=R,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{6}cosθ}\\{y=\sqrt{2}sinθ}\end{array}\right.$(θ为参数),直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t}\\{y=2-\frac{1}{2}t}\end{array}\right.$(t为参数),T为直线l与曲线C的公共点,以原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求点T的直角坐标;
(2)将曲线C上所有点的纵坐标伸长为原来的$\sqrt{3}$倍(横坐标不变)后得到曲线W,直线m的极坐标方程为pcos(θ-$\frac{π}{3}$)=$\sqrt{3}$,求直线m被曲线W截得的线段长为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在等比数列{an}中,已知a1=3,an=48,Sn=93,则n的值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在等差数列{an}中a3•a13=3,a5+a11=4,则a13-a3=-2或2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.等差数列{an}中,若公差d=2,a4+a17=6,则a2+a4+…+a20的值是(  )
A.35B.30C.40D.45

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.直线l:x-ky+2$\sqrt{2}$=0与圆C:x2+y2=4交于A,B两点,O为坐标原点,△ABC的面积为S,求S的最大值1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.将3本相同的小说,2本相同的诗集全部分给4名同学,每名同学至少1本,则不同的分法有(  )
A.24种B.28种C.32种D.36种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.甲、乙两人骑自行车从相距s千米的两地同时出发,若同向而行,经过a小时甲追上乙,若相向而行,经过b小时两人相遇,设甲速为v1千米/小时,乙速为v2千米/小时,那么$\frac{{v}_{1}}{{v}_{2}}$=$\frac{a+b}{a-b}$.

查看答案和解析>>

同步练习册答案