【题目】某地区有小学21所,中学14所,现采用分层抽样的方法从这些学校中抽取5所学校,对学生进行视力检查.
(1)求应从小学、中学中分别抽取的学校数目;
(2)若从抽取的5所学校中抽取2所学校作进一步数据
①列出所有可能抽取的结果;
②求抽取的2所学校至少有一所中学的概率.
科目:高中数学 来源: 题型:
【题目】为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.
(Ⅰ)求该校报考飞行员的总人数;
(Ⅱ)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设X表示体重超过60公斤的学生人数,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数f(x)=cos(2x)的图象向左平移个单位长度后,得到函数g(x)的图象,则下列结论中正确的是_____.(填所有正确结论的序号)
①g(x)的最小正周期为4π;
②g(x)在区间[0,]上单调递减;
③g(x)图象的一条对称轴为x;
④g(x)图象的一个对称中心为(,0).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】爱心超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完根据往年销售经验,每天需求量与当天最高气温单位:有关如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20,需求量为200瓶为了确定六月份的订购计划,统计了前三年六月份每天的最高气温数据,得到下面的频数分布表:
最高气温 | ||||||
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
(1)求六月份这种酸奶一天的需求量不超过300瓶的频率;
(2)当六月份有一天这种酸奶的进货量为450瓶时,求这一天销售这种酸奶的平均利润(单位:元)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆过点,且圆心在直线上.
(1)求圆的方程;
(2)平面上有两点,点是圆上的动点,求的最小值;
(3)若是轴上的动点,分别切圆于两点,试问:直线是否恒过定点?若是,求出定点坐标,若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】求经过直线L1:3x + 4y – 5 = 0与直线L2:2x – 3y + 8 = 0的交点M,且满足下列条件的直线方程
(1)与直线2x + y + 5 = 0平行 ;
(2)与直线2x + y + 5 = 0垂直;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着我国经济模式的改变,电商已成为当今城乡种新型的购销平台.已知经销某种商品的电商在任何一个销售季度内,每售出吨该商品可获利润万元,未售出的商品,每吨亏损万元根据往年的销售资料,得到该商品一个销售季度内市场需求量的频率分布直方图如图所示.已知电商为下一个销售季度筹备了吨该商品,现以单位:吨,)表示下一个销售季度的市场需求量,(单位:万 元)表示该电商下“个销售季度内经销该商品获得的利润.
(1)视分布在各区间内的频率为相应的概率,求;
(2)将表示为的函数,求出该函数表达式;
(3)在频率分布直方图的市场需求量分组中,若以市场需求量落入该区间的频率作为市场需求量的概率,求该季度利润不超过万元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】保险公司统计的资料表明:居民住宅距最近消防站的距离(单位:千米)和火灾所造成的损失数额(单位:千元)有如下的统计资料:
(1)请用相关系数(精确到0.01)说明与之间具有线性相关关系;
(2)求关于的线性回归方程(精确到0.01);
(3)若发生火灾的某居民区距最近的消防站10.0千米,请评估一下火灾损失(精确到0.01).
参考数据:,,,
,
参考公式:
回归直线方程为,其中,,为样本平均值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com