精英家教网 > 高中数学 > 题目详情
8.已知f(x)是一次函数,且一次项系数为正数,若f[f(x)]=4x+8,则f(x)=(  )
A.$2x+\frac{8}{3}$B.-2x-8C.2x-8D.$2x+\frac{8}{3}$或-2x-8

分析 设f(x)=ax+b,a>0代入f(f(x))=4x+8,得方程组,解出a,b的值即可.

解答 解:设f(x)=ax+b,a>0
∴f(f(x))=a(ax+b)+b=a2x+ab+b=4x+8,
∴$\left\{\begin{array}{l}{a}^{2}=4\\ ab+b=8\end{array}\right.$,
∴$\left\{\begin{array}{l}a=2\\ b=\frac{8}{3}\end{array}\right.$,
∴f(x)=2x+$\frac{8}{3}$.
故选:A.

点评 本题考查了求函数的解析式问题,本题属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.函数f(x)=2•a2x-1-3(a>0,a≠1)过定点($\frac{1}{2}$,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知sinα-2cosα=0.
(1)求$\frac{1}{sinαcosα}$的值;
(2)求4sin2α-3sinαcosα-5cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆O:x2+y2=16,圆O与x轴交于A,B两点,过点B的圆的切线为l,P是圆上异于A,B的一点,PH垂直于x轴,垂足为H,E是PH的中点,延长AP,AE分别交l于F,C.
(1)若点$P(-2,\;2\sqrt{3})$,求以FB为直径的圆M的方程,并判断P是否在圆M上;
(2)当P在圆O上运动时,试判断直线PC与圆O的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=log${\;}_{\frac{1}{2}}$[x2-2(2a-1)x+8],a∈R,若f(x)在[a,+∞)上为减函数,则a的取值范围为(  )
A.(-∞,2]B.(-$\frac{4}{3}$,2]C.(-∞,1]D.(-$\frac{4}{3}$,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={(x,y)|y=ex},B={(x,y)|y=a},若A∩B=∅,则实数a的取值范围是(  )
A.a<1B.a≤1C.a<0D.a≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知sinθ<0,tanθ>0.
(1)求θ角的集合;
(2)求$\frac{θ}{2}$终边所在象限;
(3)试判断sin$\frac{θ}{2}$cos$\frac{θ}{2}$tan$\frac{θ}{2}$的符号.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求倾斜角是直线y=-$\sqrt{3}$x+1的倾斜角的$\frac{1}{2}$,且分别满足下列条件的直线方程.
(1)经过点($\sqrt{3}$,2)
(2)在y轴上的截距是3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.命题“若实数a,b满足a+b<7,则a=2且b=3”的否命题是若实数a,b满足a+b≥7,则a≠2或b≠3.

查看答案和解析>>

同步练习册答案