精英家教网 > 高中数学 > 题目详情
(2013•丽水一模)已知直三棱柱ABC-A1B1C1,底面△ABC是等腰三角形,∠BAC=120°,AB=
12
AA1=4
,CN=3AN,点M,P,Q分别是AA1,A1B1,BC的中点.
(Ⅰ)求证:直线PQ∥平面BMN;
(Ⅱ)求直线AB与平面BMC所成角的正弦值.
分析:(Ⅰ)要证明直线PQ∥平面BMN,可在平面BMN中找到一条与PQ平行的直线即可,根据题目给出的P,Q分别是A1B1,BC的中点,想到取AB的中点G,连接PG,QG后分别交BM,BN于点E,F,根据题目给出的线段的长及线段之间的关系证出
GE
EP
=
GF
FQ
=
1
3
,从而得到EF∥PQ,然后利用线面平行的判定即可得证;
(Ⅱ)求直线AB与平面BMC所成角的正弦值,首先是找角,由题意能够得到平面BMC⊥平面AMQ,所以直接过A作MQ的垂线
AO,连接BO,在直角三角形AOB中求解∠BAO的正弦值.
解答:(Ⅰ)证明:如图,
取AB中点G,连结PG,QG分别交BM,BN于点E,F,
则E,F分别为BM,BN的中点.
GE∥
1
2
AM
GE=
1
2
AM
GF∥
1
2
AN
GF=
1
2
AN

且CN=3AN,所以 
GE
EP
=
1
3
GF
FQ
=
AN
NC
=
1
3

所以
GE
EP
=
GF
FQ
=
1
3

所以 EF∥PQ,又 EF?平面BMN,PQ?平面BMN.
所以 PQ∥平面BMN;
(Ⅱ)解:连接AQ,∵△ABC是等腰三角形,Q是BC的中点,∴AQ⊥BC,连接MQ,
作AO⊥MQ于O,连接BO,∵MA⊥平面ABC,∴MA⊥BC,
又AQ⊥BC,∴BC⊥平面AQM,∴BC⊥AO.
∵AO⊥MQ,∴AO⊥平面BCM,∴∠ABO就是AB与平面ABC所成在角.
在Rt△AQC中,∵∠QAC=60°,∴AQ=2.
在△RtAQM中,∵MQ=2
5
,由AM•AQ=MQ•AO,得AO=
AM•AQ
MQ
=
4×2
2
5
=
4
5
5

所以sin∠ABO=
AO
AB
=
5
5
点评:本题考查了直线与平面平行的判定,考查了线面角,证明线面平行时,常借助于三角形的中位线得线线平行,求线面角时,关键是把找出的角能够放在一个易于求解的三角形当中,此题是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•丽水一模)某几何体的三视图如图所示,则该几何体的体积为
108+3π
108+3π

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•丽水一模)已知公差不为零的等差数列{an}的前10项和S10=55,且a2,a4,a8成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=(-1)nan+2n,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•丽水一模)已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1),
(Ⅰ)求抛物线的标准方程;
(Ⅱ)与圆x2+(y+1)2=1相切的直线l:y=kx+t交抛物线于不同的两点M,N,若抛物线上一点C满足
OC
=λ(
OM
+
ON
)
(λ>0),求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•丽水一模)若正数a,b满足2a+b=1,则4a2+b2+
ab
的最大值为
17
16
17
16

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•丽水一模)若(x-
1
ax
)7
展开式中含x的项的系数为280,则a=(  )

查看答案和解析>>

同步练习册答案