精英家教网 > 高中数学 > 题目详情
6.设f(x)=$\frac{{3}^{x}}{{3}^{x}+1}$-$\frac{1}{3}$,若规定<x>表示不小于x的最小整数,则函数y=<f(x)>的值域是(  )
A.{0,1}B.{0,-1}C.{-1,1}D.{-1,0,1}

分析 先求出y的值域,再根据新的定义“<x>表示大于或等于x的最小整数”的意义,再利用x≤<x><x+1即可解出本题.

解答 解:f(x)=$\frac{{3}^{x}}{{3}^{x}+1}$-$\frac{1}{3}$=$\frac{{3}^{x}+1-1}{{3}^{x}+1}$-$\frac{1}{3}$=$\frac{2}{3}$-$\frac{1}{{3}^{x}+1}$,
∵3x+1>1,
∴0<$\frac{1}{{3}^{x}+1}$<1,
∴-1<$\frac{1}{{3}^{x}+1}$<0,
∴-$\frac{1}{3}$<$\frac{2}{3}$-$\frac{1}{{3}^{x}+1}$<$\frac{2}{3}$,
∵规定<x>表示不小于x的最小整数,
∴x≤<x><x+1,
∴-1≤<f(x)><1
∴函数y=<f(x)>的值域为{0,-1},
故选:B

点评 本题是新定义问题,解题的关键在于准确理解新的定义“<x>表示大于或等于x的最小整数”的意义,得到x≤<x><x+1,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.计算
(1)若 A={x|x>1},B={x|-2<x<2},C={x|-3<x<5},求(A∪B)∩C.
(2)${(2\frac{1}{4})^{\frac{1}{2}}}-{(-9.6)^0}-{(3\frac{3}{8})^{-\frac{2}{3}}}+{(1.5)^{-2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若x、y∈R+,x+4y=40,则xy的最大值为100.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺,容纳米1950斛(1丈=10尺,斛为容积单位,1斛≈1.62立方尺,π≈3),则圆柱底面周长约为54尺.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,平面ABE⊥平面ABCD,四边形ABCD为直角梯形,∠CBA=90°,AD∥BC∥EF,△ABE为等边三角形,AB=2$\sqrt{3}$,BC=2,AD=4,EF=3
(Ⅰ)求证:平面CDF⊥平面ABCD;
(Ⅱ)求直线AF与平面CDF所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知幂函数f(x)=xa的图象过点(4,2),则f(9)的值为(  )
A.±3B.±$\frac{9}{2}$C.3D.$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知定义在R上的偶函数f(x)满足f(x+4)=-f(x),且在区间[0,4]上市减函数,则f(10)、f(13)、f(15)这三个函数值从小到大排列为f(13)<f(10)<f(15).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=\sqrt{5-x}+lg(x+1)$的定义域为集合A,函数g(x)=lg(x2-2x+a)的定义域为集合B.
(Ⅰ)当a=-8时,求A∩B;
(Ⅱ)若A∩∁RB={x|-1<x≤3},求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知tanα=2,则$\frac{{sin(α+\frac{π}{2})+cos(α-\frac{π}{2})}}{{3sin(\frac{π}{2}-α)-cos(\frac{π}{2}+α)}}$=$\frac{3}{5}$.

查看答案和解析>>

同步练习册答案