精英家教网 > 高中数学 > 题目详情

已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.

 (Ⅰ)求椭圆的方程;

 (Ⅱ)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点

线段垂直平分线交于点,求点的轨迹的方程;

 (Ⅲ)设轴交于点,不同的两点上,且满足,求的取值范围.

 

【答案】

(Ⅰ)(Ⅱ)(Ⅲ)

【解析】

试题分析:(Ⅰ)利用离心率和直线与圆相切得到两个等量关系,确定椭圆方程;(Ⅱ)利用定义法求解曲线方程;(Ⅲ)采用坐标法,将向量问题坐标化,进行有效的整理为,然后借助均值不等式进行求解范围.

试题解析:(Ⅰ)∵  

∵直线相切,

   ∴        3分

∵椭圆的方程是           6分

(Ⅱ)∵

∴动点到定直线的距离等于它到定点的距离,

∴动点的轨迹是准线,为焦点的抛物线        6分

∴点的轨迹的方程为      9分

(Ⅲ),设 

 

,∴

,化简得          11分

当且仅当时等号成立       13分

,又

∴当时,,故的取值范围是  14分

考点:1.椭圆方程;2.抛物线的定义;3.坐标法的应用.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知椭圆E的离心率为e,两焦点为F1,F2,抛物线C以F1为顶点,F2为焦点,P为两曲线的一个公共点,若
|PF1|
|PF2|
=e,则e的值为(  )
A、
3
3
B、
3
2
C、
2
2
D、
6
3

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xOy中,椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左焦点为F,右顶点为A,动点M为右准线上一点(异于右准线与x轴的交点),设线段FM交椭圆C于点P,已知椭圆C的离心率为
2
3
,点M的横坐标为
9
2

(1)求椭圆C的标准方程;
(2)设直线PA的斜率为k1,直线MA的斜率为k2,求k1•k2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E的离心率为e,两焦点为F1、F2,抛物线C以F1为顶点,F2为焦点,P为两曲线的一个交点,若
|PF1|
|PF2|
=e,则e的值为
3
3
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的离心率为e=
6
3
,一条准线方程为x=
3
2
2

(1)求椭圆C的标准方程;
(2)设动点P满足:
OP
=
OM
+
ON
,其中M,N是椭圆上的点,直线OM与ON的斜率之积为-
1
3
,问:是否存在两个定点A,B,使得|PA|+|PB|为定值?若存在,求A,B的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(A题) (奥赛班做)已知椭圆E的离心率为e,左右焦点分别为F1、F2,抛物线C以F1顶点,F2为焦点,P为两曲线的一个交点,
|PF1|
|PF2|
=e
,则e的值为
3
3
3
3

查看答案和解析>>

同步练习册答案