精英家教网 > 高中数学 > 题目详情
19.在正方体中,异面直线AA1与BD1所成的角为α,则有cosα=$\frac{\sqrt{3}}{3}$.

分析 由AA1∥BB1,得∠B1BD1是异面直线AA1与BD1所成的角,由此能求出cosα.

解答 解:设正方体棱长为1,则BD1=$\sqrt{3}$,
∵AA1∥BB1
∴∠B1BD1是异面直线AA1与BD1所成的角,即∠B1BD1=α,
∴cosα=$\frac{B{B}_{1}}{B{D}_{1}}$=$\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$.
故答案为:$\frac{\sqrt{3}}{3}$.

点评 本题考查角的余弦值的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,三棱柱ABC-A1B1C1的侧棱与底面垂直,AC=9,BC=12,AB=15,点D是AB的中点.
(1)求证:AC⊥B1C;
(2)求证:AC1∥平面CDB1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.以下判断正确的个数是(  )
①相关系数|r|值越小,变量之间的相关性越强.
②命题“存在x∈R,x2+x-1<0”的否定是“不存在x∈R,x2+x-1≥0”.
③“p∨q”为真是“?p”为假的必要不充分条件
④若回归直线的斜率估计值是1.23,样本点的中心为(4,5),则回归直线方程是$\widehat{y}$=1.23x+0.08;
⑤在根据身高预报体重的线性回归模型中,R2=0.64说明了身高解释了64%的体重变化.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知三角形的顶点是A(1,-1,1),B(2,1,-1),C(-1,-1,-2),则这个三角形的面积等于(  )
A.$\frac{\sqrt{101}}{2}$B.$\frac{\sqrt{97}}{2}$C.$\frac{\sqrt{103}}{2}$D.$\frac{\sqrt{105}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.解不等式组:$\left\{\begin{array}{l}{3+2x<1+4x}\\{4-2x>2x-4}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.四面体ABCD的四个顶点都在球O的球面上,AB⊥平面BCD,△BCD是边长为3的等边三角形,若AB=2,则球O的表面积为16π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=$\frac{1}{{x}^{2}+2x-8}$的单调递增区间是(-∞,-4),(-4,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+$\sqrt{2}$-1,x∈R.
(1)求函数f(x)的单调增区间;
(2)求函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{6}$]上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.己知函数f(x)=4cosxsin(x+$\frac{π}{6}$)-1.
①求f(x)的最小正周期和单调区间;
②用五点法作出其简图;
③求f(x)在区间[-$\frac{π}{6}$,$\frac{π}{4}$]上最大值和最小值.

查看答案和解析>>

同步练习册答案