【题目】如图,四边形与都是边长为的正方形,点是的中点, 平面.
(1)求证: 平面;
(2)求证:平面平面;
(3)求平面与平面所成锐二面角的正切值.
【答案】(1)详见解析;(2)详见解析;(3) .
【解析】试题分析:证明线面平行,利用线面平行的判定定理.本题借助三角形中位线定理可以得到线线平行,进而证明线面平行;证明面面垂直,利用面面垂直的判定定理,证明一个平面经过另一个平面的一条垂线,因此首先寻求线面垂直,只需证明直线与平面内的两条相交直线垂直,进而说明线面垂直,进而达到面面垂直;求二面角可利用法向量计算.
试题解析:
(1)设交于,连接为正方形,所以为中点,
又为的中点, 为的中位线, ,
又平面平面,
平面.
(2)为正方形,
平面平面
又平面.
平面
平面平面.
(3)由(2)已证平面平面
,平面平面
锐角为平面与平面所成锐二面角的平面交
平面,
在边长为的正方形中,而
为所求.
法二:依条件有,以为坐标原点,分别以为轴, 轴, 轴建立空间直角坐标系,则有
平面 平面的一个法向量为
,设平面的一个法向量为
则,可取
设平面与平面所成锐二面角大小为,
则,
为所求.
科目:高中数学 来源: 题型:
【题目】已知下图中,四边形 ABCD是等腰梯形, , , 于M、交EF于点N, , ,现将梯形ABCD沿EF折起,记折起后C、D为、且使,如图示.
(Ⅰ)证明: 平面ABFE;,
(Ⅱ)若图6中, ,求点M到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在四棱锥中,底面是矩形,且,,平面,、分别是线段、的中点.
(1)证明:
(2)在线段上是否存在点,使得∥平面,若存在,确定点的位置;若不存在,说明理由.
(3)若与平面所成的角为,求二面角的余弦值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若不等式(1-a)x2-4x+6>0的解集是{x|-3<x<1}.
(1)解不等式2x2+(2-a)x-a>0;
(2)b为何值时,ax2+bx+3≥0的解集为R.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=bax(其中a,b为常量,且a>0,a≠1)的图象经过点A(1,6),B(3,24).
(1)求f(x)的表达式;
(2)设函数g(x)=f(x)﹣2×3x , 求g(x+1)>g(x)时x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的离心率为,以原点为圆心,椭圆C的短半轴长为半径的圆与直线相切.、是椭圆的左、右顶点,直线过点且与轴垂直.
(1)求椭圆的标准方程;
(2)设是椭圆上异于、的任意一点,作轴于点,延长到点使得,连接并延长交直线于点,为线段的中点,判断直线与以为直径的圆的位置关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的离心率为,以原点为圆心,椭圆C的短半轴长为半径的圆与直线相切.、是椭圆的左、右顶点,直线过点且与轴垂直.
(1)求椭圆的标准方程;
(2)设是椭圆上异于、的任意一点,作轴于点,延长到点使得,连接并延长交直线于点,为线段的中点,判断直线与以为直径的圆的位置关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l与圆C:x2+y2+2x﹣4y+a=0相交于A,B两点,弦AB的中点为M(0,1).
(1)若圆C的半径为,求实数a的值;
(2)若弦AB的长为6,求实数a的值;
(3)当a=1时,圆O:x2+y2=2与圆C交于M,N两点,求弦MN的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在(﹣∞,+∞)上的偶函数,且在(﹣∞,0]上是增函数,设a=f(log47),b=f(log 3),c=f(21.6),则a,b,c的大小关系是( )
A.c<a<b
B.c<b<a
C.b<c<a
D.a<b<c
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com