精英家教网 > 高中数学 > 题目详情
1.设椭圆$\frac{x^2}{3}+\frac{y^2}{2}$=1右焦点为F2,点P是圆x2+y2-6x+8=0上的动点,则PF2的最大值为3.

分析 由圆x2+y2-6x+8=0可得(x-3)2+y2=1,可得圆心C,半径r.则|PF2|最大值=|CF2|+r.

解答 解:椭圆$\frac{x^2}{3}+\frac{y^2}{2}$=1,可得$c=\sqrt{{a}^{2}-{b}^{2}}$=$\sqrt{3-2}$=1.
∴右焦点为F2(1,0),
由圆x2+y2-6x+8=0可得(x-3)2+y2=1,可得圆心C(3,0),半径r=1.
∴|CF2|=2.
则|PF2|最大值=|CF2|+r=2+1=3.
故答案为:3.

点评 本题了考查了椭圆与圆的标准方程及其性质、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知两非零向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$不共线.设$\overrightarrow{a}$=λ$\overrightarrow{{e}_{1}}$+μ$\overrightarrow{{e}_{2}}$(λ、μ∈R且λ22≠0),则(  )
A.$\overrightarrow{a}$∥$\overrightarrow{{e}_{1}}$B.$\overrightarrow{a}$∥$\overrightarrow{{e}_{2}}$
C.$\overrightarrow{a}$与$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$共面D.以上三种情况均有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在复平面内,复数$\frac{-2-3i}{i}$对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若方程|3x-1|=k有两个不同解,则实数k的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.定义区间[a,b]的区间长度为b-a,如图是某圆拱形桥一孔圆拱的示意图.这个圆的圆拱跨度AB=20m,拱高OP=4m,建造时每间隔4m需要用一根支柱支撑,求支柱A2P2的高度所处的区间[a,b].(要求区间长度为$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)用辗转相除法求840与1764的最大公约数.
(2)用更相减损术求561与255的最大公约数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若cosα>0,则(  )
A.tanαsinα≥0B.sin2α≤0C.sinα≤0D.cos2α<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数 f(x)的定义域为 A,若当f(x1)=f(x2)(x1,x2∈A)时,总有x1=x2,则称 f(x)为单值函数.例如,函数f(x)=2x+1(x∈R)是单值函数.给出下列命题:
①函数f(x)=x2(x∈R)是单值函数;
②函数f(x)=2x(x∈R)是单值函数;③若f(x)为单值函数,x1,x2∈A,且x1≠x2,则f(x1)≠f(x2);
④函数f(x)=$\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{(\frac{1}{2})^{x}-1,x<0}\end{array}\right.$是单值函数.
其中的真命题是②③.(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数f(x+1)的定义域是[-2,4],则函数f(2x-1)的定义域是[0,3].

查看答案和解析>>

同步练习册答案