【题目】我国古代重要建筑的室内上方,通常会在正中部位做出向上凸起的窟窿状装饰,这种装饰称为藻井.北京故宫博物院内的太和殿上方即有藻井(图1),全称为龙风角蝉云龙随瓣枋套方八角深金龙藻井.它展示出精美的装饰空间和造型艺术,是我国古代丰富文化的体现,从分层构造上来看,太和殿藻井由三层组成:最下层为方井,中为八角井,上为圆井.图2是由图1抽象出的平面图形,若在图2中随机取一点,则此点取自圆内的概率为( )
[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/18/2487522753945600/2488179565256704/STEM/4d65bbaaf0c447efbbb2157ff8983df0.png]
A.B.C.D.
【答案】A
【解析】
根据图(2)正方形中各边中点分别为,可得四边形为正方形,图中的圆为该正方形的内切圆,即可得出该圆半径与正方形的边长关系,即可求出结论.
设图(2)正方形边长为,分别为各边的中点,
则四边形是边长为的正方形,
圆为正方形的内切圆,其半径为,
所以在图2中随机取一点,则此点取自圆内的概率为.
故选:A.
[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/18/2487522753945600/2488179565256704/EXPLANATION/34bc88f7b7ec4e2f9032938d87d45c45.png]
科目:高中数学 来源: 题型:
【题目】为迎接年北京冬季奥运会,普及冬奥知识,某校开展了“冰雪答题王”冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了名学生,将他们的比赛成绩(满分为分)分为组:,,,,,,得到如图所示的频率分布直方图.
(1)求的值;
(2)记表示事件“从参加冬奥知识竞赛活动的学生中随机抽取一名学生,该学生的比赛成绩不低于分”,估计的概率;
(3)在抽取的名学生中,规定:比赛成绩不低于分为“优秀”,比赛成绩低于分为“非优秀”.请将下面的列联表补充完整,并判断是否有的把握认为“比赛成绩是否优秀与性别有关”?
优秀 | 非优秀 | 合计 | |
男生 | |||
女生 | |||
合计 |
参考公式及数据:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥中,平面平面,,,,,为棱上一动点,点是的中点.
(1)求证:;
(2)若,问是否存在点E,使得二面角的余弦值为?若存在,求出点E的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
B.命题“x0∈R,x0﹣1<0”的否定是“x∈R,x2+x﹣1>0”
C.命题“若x=y,则sin x=sin y”的逆否命题为假命题
D.若“p或q”为真命题,则p,q中至少有一个为真命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】年是打赢蓝天保卫战三年行动计划的決胜之年,近年来,在各地各部门共同努力下,蓝天保卫战各项任务措施稳步推进,取得了积极成效,某学生随机收集了甲城市近两年上半年中各天的空气量指数,得到频数分布表如下:
年上半年中天的频数分布表
的分组 | |||||
天数 |
年上半年中天的频数分布表
的分组 | |||||
天数 |
(1)估计年上半年甲城市空气质量优良天数的比例;
(2)求年上半年甲城市的平均数和标准差的估计值(同一组中的数据用该组区间的中点值为代表);(精确到)
(3)用所学的統计知识,比较年上半年与年上半年甲城市的空气质量情况.
附:
的分组 | ||||||
空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知长方体,,,,已知P是矩形内一动点,与平面所成角为,设P点形成的轨迹长度为,则_________;当的长度最短时,三棱锥的外接球的表面积为_____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱中,,,点D,E分别是线段BC,上的动点(不含端点),且.则下列说法正确的是( )
A.平面
B.该三棱柱的外接球的表面积为
C.异面直线与所成角的正切值为
D.二面角的余弦值为
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com