精英家教网 > 高中数学 > 题目详情
如图1,在直角梯形中,. 把沿对角线折起到的位置,如图2所示,使得点在平面上的正投影恰好落在线段上,连接,点分别为线段的中点.

(1)求证:平面平面
(2)求直线与平面所成角的正弦值;
(3)在棱上是否存在一点,使得到点四点的距离相等?请说明理由.
(1)证明过程详见解析;(2)正弦值为;(3)存在,点E即为所求.

试题分析:本题以三棱锥为几何背景考查面面平行和二面角的求法,可以运用传统几何法,也可以用空间向量法求解,突出考查空间想象能力和计算能力.第一问,首先由点的正投影上得平面,利用线面垂直的性质,得,在原直角梯形中,利用已知的边和角,得到,所以得到为等边三角形,从而知的中点,所以可得
利用面面平行的判定得出证明;第二问,先建立空间直角坐标系,写出所需点的坐标,先设出平面的法向量,利用求出,利用夹角公式求直线和法向量所在直线的夹角;第三问,由已知和前2问过程中得到的数据,可以看出,所以点即为所求.
试题解析:(I)因为点在平面上的正投影恰好落在线段上,
所以平面,所以,                  1分
因为在直角梯形中,
所以,所以是等边三角形,
所以中点,                     2分
所以,                      3分
同理可证

所以平面平面.                          5分
(II)在平面内过的垂线 如图建立空间直角坐标系,则,      6分
因为

设平面的法向量为
因为
所以有,即
 所以 ,                8分
,                   10分
所以直线与平面所成角的正弦值为 .               11分
(III)存在,事实上记点即可                      12分
因为在直角三角形中,,   13分
在直角三角形中,点
所以点到四个点的距离相等.                   14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱(侧棱和底面垂直的棱柱)中,平面侧面,,且满足.

(1)求证:
(2)求点的距离;
(3)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥底面是平行四边形,面,,,分别为的中点.

(1)求证:
(2)求证:
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,在四面体A?BCD中,AD^平面BCD,BC^CD,AD=2,BD=2.M是AD的中点.

(1)证明:平面ABC平面ADC;
(2)若ÐBDC=60°,求二面角C?BM?D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,平面为侧棱上一点,它的正(主)视图和侧(左)视图如图所示.

(1)证明:平面
(2)在的平分线上确定一点,使得平面,并求此时的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥E—ABCD中,底面ABCD为边长为5的正方形,AE平面CDE,AE=3.

(1)若的中点,求证:平面
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,侧面与底面垂直, 分别是的中点,,,.

(Ⅰ)求证:平面;
(Ⅱ)若点为线段的中点,求异面直线所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,直线平面,垂足为,直线是平面的一条斜线,斜足为,其中,过点的动直线交平面于点,则下列说法正确的是___________.

①若,则动点B的轨迹是一个圆;
②若,则动点B的轨迹是一条直线;
③若,则动点B的轨迹是抛物线;
,则动点B的轨迹是椭圆;
,则动点B的轨迹是双曲线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知m,n是两条不同的直线,α,β是两个不同的平面,有下列四个命题:
①若m∥n,n?α,则m∥α;
②若m⊥n,m⊥α,nα,则n∥α;
③若α⊥β,m⊥α,n⊥β,则m⊥n;
④若m,n是异面直线,m?α,n?β,m∥β,则n∥α.
其中正确的命题有(  )
A.①②B.②③C.③④D.②④

查看答案和解析>>

同步练习册答案