精英家教网 > 高中数学 > 题目详情
设命题P:复数z=(
1-i
1+i
)2-a(1-2i)+i
对应的点在第二象限;
命题q:不等式|a-1|≥sinx对于x∈R恒成立;
如果“p且q”为假命题,“p或q”为真命题,求实数a的取值范围.
由已知得:若命题P为真,
则复数z=(
1-i
1+i
)2-a(1-2i)+i
=(
(1-i)2
2
)2-a+2ai+i
=-1-a+(2a+1)i对应的点在第二象限,
即:
-1-a<0
2a+1>0
,解得:a>-
1
2

由不等式|a-1|≥sinx对于x∈R恒成立,
则|a-1|≥1恒成立,
若命题q为真,则|a-1|≥1,即:a≥2或a≤0.
∵“p且q”为假命题,“p或q”为真命题
∴命题p真q假或命题p假q真
a<-
1
2
0<a<2
,则:0<a<2;或
a≤-
1
2
a≥2或a≤0
,则a≤-
1
2

∴所求实数a的取值范围为(-∞,-
1
2
]∪(0,2).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设命题p:复数z=(2+mi)2(i为虚数单位)在复平面内对应的点在第一象限;命题q:?x∈R,3x2+2mx+(m+6)>0.若命题“(¬p)∧q”为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题P:复数z=(
1-i1+i
)2-a(1-2i)+i
对应的点在第二象限;
命题q:不等式|a-1|≥sinx对于x∈R恒成立;
如果“p且q”为假命题,“p或q”为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•闵行区二模)给出下列四个命题:
①如果复数z满足|z+i|+|z-i|=2,则复数z在复平面的对应点的轨迹是椭圆.
②若对任意的n∈N*,(an+1-an-1)(an+1-2an)=0恒成立,则数列{an}是等差数列或等比数列.
③设f(x)是定义在R上的函数,且对任意的x∈R,|f(x)|=|f(-x)|恒成立,则f(x)是R上的奇函数或偶函数.
④已知曲线C:
x2
9
-
y2
16
=1
和两定点E(-5,0)、F(5,0),若P(x,y)是C上的动点,则||PE|-|PF||<6.
上述命题中错误的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设命题P:复数z=数学公式对应的点在第二象限;
命题q:不等式|a-1|≥sinx对于x∈R恒成立;
如果“p且q”为假命题,“p或q”为真命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案