【题目】如图所示,棱长为a的正方体,N是棱的中点;
(1)求直线AN与平面所成角的大小;
(2)求到平面ANC的距离.
科目:高中数学 来源: 题型:
【题目】有下列四个命题:(1)一定存在直线,使函数的图像与函数的图像关于直线对称;(2)不等式:的解集为;(3)已知数列的前项和为,,则数列一定是等比数列;(4)过抛物线上的任意一点的切线方程一定可以表示为.则正确命题的序号为_________________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司欲对员工饮食习惯进行一次调查,从某科室的100人中的饮食结构调查结果统计如下表.
主食蔬菜 | 主食肉类 | 总计 | |
不超过45岁 | 15 | 40 | |
45岁以上 | 20 | ||
总计 |
(1)完成列联表,并判断能否有99%的把握认为员工的饮食习惯与年龄有关?
(2)在45岁以上员工中按照饮食习惯进行分层抽样抽出一个容量为6的样本,从这6个人中随机抽取3个人,求这3个人都主食蔬菜的概率.
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】每年9月第三周是国家网络安全宣传周.某学校为调查本校学生对网络安全知识的了解情况,组织了《网络信息辨析测试》活动,并随机抽取50人的测试成绩绘制了频率分布直方图如图所示:
(1)某学生的测试成绩是75分,你觉得该同学的测试成绩低不低?说明理由;
(2)将成绩在内定义为“合格”;成绩在内定义为“不合格”.①请将下面的列联表补充完整; ②是否有90%的把认为网络安全知识的掌握情况与性别有关?说明你的理由;
合格 | 不合格 | 合计 | |
男生 | 26 | ||
女生 | 6 | ||
合计 |
(3)在(2)的前提下,对50人按是否合格,利用分层抽样的方法抽取5人,再从5人中随机抽取2人,求恰好2人都合格的概率.附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一款手游,页面上有一系列的伪装,其中隐藏了4个宝藏.如果你在规定的时间内找到了这4个宝藏,将会弹出下一个页面,这个页面仍隐藏了2个宝藏,若能在规定的时间内找到这2个宝藏,那么闯关成功,否则闯关失败,结束游戏;如果你在规定的时间内找到了3个宝藏,仍会弹出下一个页面,但这个页面隐藏了4个宝藏,若能在规定的时间内找到这4个宝藏,那么闯关成功,否则闯关失败,结束游戏;其它情况下,不会弹出下一个页面,闯关失败,并结束游戏.
假定你找到任何一个宝藏的概率为,且能否找到其它宝藏相互独立..
(1)求闯关成功的概率;
(2)假定你付1个Q币游戏才能开始,能进入下一个页面就能获得2个Q币的奖励,闯关成功还能获得另外4个Q币的奖励,闯关失败没有额外的奖励.求一局游戏结束,收益的Q币个数X的数学期望(收益=收入-支出).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程是(是参数).以原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.
(1)求曲线的普通方程与曲线的直角坐标方程;
(2)设为曲线上的动点,过点且与垂直的直线交于点,求的最小值,并求此时点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:实数x满足x2﹣4ax+3a2<0(a>0),命题q:实数x满足x2﹣5x+6<0.
(1)若a=1,且p∧q为真命题,求实数x的取值范围;
(2)若p是q的必要不充分条件,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,左、右焦点分别是,椭圆上短轴的一个端点与两个焦点构成的三角形的面积为;
(1)求椭圆的方程;
(2)过作垂直于轴的直线交椭圆于两点(点在第二象限),是椭圆上位于直线两侧的动点,若,求证:直线的斜率为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com