精英家教网 > 高中数学 > 题目详情
已知为椭圆的左右焦点,抛物线以为顶点,为焦点,设为椭圆与抛物线的一个交点,椭圆离心率为,且,求的值
如图:

作椭圆的左准线的垂线,垂足为
,所以
所以椭圆的左准线即为抛物线的准线
所以,即,所以
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
设椭圆的左右焦点分别为,离心率,右准线为上的两个动点,
(Ⅰ)若,求的值;
(Ⅱ)证明:当取最小值时,共线。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

分别是椭圆的左右焦点,若在其右准线上存在点
使得线段的垂直平分线恰好经过,求的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点,直线相交于点,且它们的斜率之积为
(1)求动点的轨迹的方程;
(2)若过点的直线与曲线交于两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知方程+=1表示焦点在y轴上的椭圆,则m的取值范围是       (   )
        
A.m<-1或1<m<B.1<m<2
C.m<-1或1<m<2D.m<2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知长方形ABCD, AB=2, BC="1." 以AB的中点为原点建立如图8所示的平面直角坐标系.
(Ⅰ)求以A、B为焦点,且过C、D两点的椭圆的标准方程;
(Ⅱ)过点P(0,2)的直线交(Ⅰ)中椭圆于M,N两点,是否存在直线,使得以弦MN为直径的圆恰好过原点?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点,焦点在轴上的椭圆与轴的负半轴交于点,与轴的正半轴交于点是左焦点且到直线的距离,求椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的中心在坐标原点,焦点在x轴上,以其两个焦点和短轴的两个端点为顶点的
四边形是一个面积为4的正方形,设P为该椭圆上的动点,CD的坐标分别是,则PC·PD的最大值为  (     )
A   4        B       C    3     D   +2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是椭圆上的一个动点,则的最大值为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案