分析 不等式f(x)>$\frac{3}{{e}^{x}}$+1可化为exf(x)-ex>3,设g(x)=exf(x)-ex,导数法可判g(x)的单调性,可得不等式的解集.
解答 解:不等式f(x)>$\frac{3}{{e}^{x}}$+1可化为exf(x)-ex>3
设g(x)=exf(x)-ex,(x∈R),
则g′(x)=exf(x)+exf′(x)-ex
=ex[f(x)+f′(x)-1],
∵f(x)+f′(x)>1,
∴f(x)+f′(x)-1>0,
∴g′(x)>0,
∴y=g(x)在定义域上单调递增,
∵exf(x)-ex>3,∴g(x)>3,
又∵g(0)=e0f(0)-e0=4-1=3,
∴g(x)>g(0),∴x>0,
∴原不等式的解集为{x|x>0}
故答案为:{x|x>0}
点评 本题考查不等式的解集,涉及函数和导数以及构造法,属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x-$\frac{3}{x}$≤4 | B. | |x-2|≤$\sqrt{7}$ | C. | x-4$\sqrt{x}$-3≤0 | D. | x4-4x2-3≤0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
年龄/岁 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 合计 |
人数 | 8 | 40 | 231 | 315 | 280 | 107 | 13 | 6 | 1000 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com