精英家教网 > 高中数学 > 题目详情
20.若定义在R上的函数f(x)满足f(x)+f′(x)>1,f(0)=4,则不等式f(x)>$\frac{3}{{e}^{x}}$+1的解集为{x|x>0}.

分析 不等式f(x)>$\frac{3}{{e}^{x}}$+1可化为exf(x)-ex>3,设g(x)=exf(x)-ex,导数法可判g(x)的单调性,可得不等式的解集.

解答 解:不等式f(x)>$\frac{3}{{e}^{x}}$+1可化为exf(x)-ex>3
设g(x)=exf(x)-ex,(x∈R),
则g′(x)=exf(x)+exf′(x)-ex
=ex[f(x)+f′(x)-1],
∵f(x)+f′(x)>1,
∴f(x)+f′(x)-1>0,
∴g′(x)>0,
∴y=g(x)在定义域上单调递增,
∵exf(x)-ex>3,∴g(x)>3,
又∵g(0)=e0f(0)-e0=4-1=3,
∴g(x)>g(0),∴x>0,
∴原不等式的解集为{x|x>0}
故答案为:{x|x>0}

点评 本题考查不等式的解集,涉及函数和导数以及构造法,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知a<b<0,n>1,n∈N*,化简$\root{n}{(a-b)^{n}}$+$\root{n}{(a+b)^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.随机抽取某机器在一段时间内加工的零件100个,测量它们的直径,对这100个数据分组并统计各组的频数,其结果为[12.5,14.5),6;[14.5,16.5),16;[16.5,18.5),18;[18.5,20.5),22;[20.5,22.5),20;[22.5,24.5),10;[24.5,26.5),8.
(1)列出样本的频率分布表,并画出频率分布直方图;
(2)试估计这台机器加工一个这种零件的直径不小于20.5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.与不等式x2-4x-3≤0同解的不等式是(  )
A.x-$\frac{3}{x}$≤4B.|x-2|≤$\sqrt{7}$C.x-4$\sqrt{x}$-3≤0D.x4-4x2-3≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆M的极坐标方程为ρ=$\sqrt{2}$sin(θ+$\frac{π}{4}$),现以极点为坐标原点,极轴为x轴正半轴,建立平面直角坐标系.
(1)求圆M的标准方程;
(2)过圆心M的直线l与椭圆$\frac{{x}^{2}}{2}$+y2=1交于A,B两点,求|MA|•|MB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.若不等式$\frac{x+2}{k}$>1+$\frac{x-3}{{k}^{2}}$的解是x>3,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某高级中学有学生1000人,统计全体学生的年龄,得到如下数据:
年龄/岁1314151617181920合计
人数8402313152801071361000
从中任意选取1人,求:
(1)年龄大于18岁的概率;
(2)年龄不低于15岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f($\sqrt{x}$+2)=x2-4$\sqrt{x}$,求f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在等比数列{an}中,
(1)a4=2,a7=8,求an
(2)a2+a5=18,a3+a6=9,an=1,求n;
(3)a3=2,a2+a4=$\frac{20}{3}$,求an

查看答案和解析>>

同步练习册答案