精英家教网 > 高中数学 > 题目详情

(I)若不等式|2x-a|+a≤6的解集为{x|-2≤x≤3},求实数a的值;
(II)若不等式|2a+b|+|2a-b|≥|a|(|2+x|+|2-x|)恒成立,求实数x的取值范围.

解:(I) 由|2x-a|+a≤6得|2x-a|≤6-a,
∴a-6≤2x-a≤6-a,解得a-3≤x≤3,
由题意可得 a-3=-2,即a=1.(5分)
(II)由绝对值不等式的性质可得|2a+b|+|2a-b|≥|2a+b+2a-b|=|4a|,
∴|4a|≥|a|(|2+x|+|2-x|).
当a=0时,上式恒成立,故x∈R.
当a≠0时,消去|a|有4≥|2+x|+|2-x|.
又∵|2+x|+|2-x|≥|2+x+2-x|=4,
∴|2+x|+|2-x|=4,∴-2≤x≤2.
当a=0时,解集为R;当a≠0时,解集为{x|-2≤x≤2}. (10分)
分析:(I) 由题意可得 得|2x-a|≤6-a,故a-3≤x≤3,再结合解集为{x|-2≤x≤3}可得 a-3=-2,由此求得a的值.
(II)由题意可得|4a|≥|a|(|2+x|+|2-x|)恒成立.显然a=0满足条件,a≠0时,有4≥|2+x|+|2-x|.再由|2+x|+|2-x|≥|2+x+2-x|=4,可得|2+x|+|2-x|=4,从而得到实数x的取值范围.
点评:本题主要考查绝对值的意义,绝对值不等式的性质和解法,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2
x
-lnx-2.
(I)求f(x)的单调区间;
(II)若不等式
x-m
lnx
x
恒成立,求实数m的取值组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)的二次项系数为a,且不等式f(x)>2x的解集为(-1,3).
(I)若函数f(x)的图象过点(0,3),求f(x);
(Ⅱ)在(I)的条件下,对于任意x0∈[-6,6],求使f(x0)≥-2的概率;
(Ⅲ)当x∈[0,1]时,试讨论|f(x)+(2a-1)x+3a+1|≤3成立的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

(I)若不等式|2x-a|+a≤6的解集为{x|-2≤x≤3},求实数a的值;
(II)若不等式|2a+b|+|2a-b|≥|a|(|2+x|+|2-x|)恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山西省太原五中高三(下)4月月考数学试卷(文科)(解析版) 题型:解答题

(I)若不等式|2x-a|+a≤6的解集为{x|-2≤x≤3},求实数a的值;
(II)若不等式|2a+b|+|2a-b|≥|a|(|2+x|+|2-x|)恒成立,求实数x的取值范围.

查看答案和解析>>

同步练习册答案